$$$\frac{1}{\left(x^{2} - 20 x\right)^{2}}$$$ 的積分

此計算器將求出 $$$\frac{1}{\left(x^{2} - 20 x\right)^{2}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{1}{\left(x^{2} - 20 x\right)^{2}}\, dx$$$

解答

進行部分分式分解(步驟可見 »):

$${\color{red}{\int{\frac{1}{\left(x^{2} - 20 x\right)^{2}} d x}}} = {\color{red}{\int{\left(- \frac{1}{4000 \left(x - 20\right)} + \frac{1}{400 \left(x - 20\right)^{2}} + \frac{1}{4000 x} + \frac{1}{400 x^{2}}\right)d x}}}$$

逐項積分:

$${\color{red}{\int{\left(- \frac{1}{4000 \left(x - 20\right)} + \frac{1}{400 \left(x - 20\right)^{2}} + \frac{1}{4000 x} + \frac{1}{400 x^{2}}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{400 x^{2}} d x} + \int{\frac{1}{4000 x} d x} + \int{\frac{1}{400 \left(x - 20\right)^{2}} d x} - \int{\frac{1}{4000 \left(x - 20\right)} d x}\right)}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{4000}$$$$$$f{\left(x \right)} = \frac{1}{x - 20}$$$

$$\int{\frac{1}{400 x^{2}} d x} + \int{\frac{1}{4000 x} d x} + \int{\frac{1}{400 \left(x - 20\right)^{2}} d x} - {\color{red}{\int{\frac{1}{4000 \left(x - 20\right)} d x}}} = \int{\frac{1}{400 x^{2}} d x} + \int{\frac{1}{4000 x} d x} + \int{\frac{1}{400 \left(x - 20\right)^{2}} d x} - {\color{red}{\left(\frac{\int{\frac{1}{x - 20} d x}}{4000}\right)}}$$

$$$u=x - 20$$$

$$$du=\left(x - 20\right)^{\prime }dx = 1 dx$$$ (步驟見»),並可得 $$$dx = du$$$

該積分可改寫為

$$\int{\frac{1}{400 x^{2}} d x} + \int{\frac{1}{4000 x} d x} + \int{\frac{1}{400 \left(x - 20\right)^{2}} d x} - \frac{{\color{red}{\int{\frac{1}{x - 20} d x}}}}{4000} = \int{\frac{1}{400 x^{2}} d x} + \int{\frac{1}{4000 x} d x} + \int{\frac{1}{400 \left(x - 20\right)^{2}} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{4000}$$

$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$

$$\int{\frac{1}{400 x^{2}} d x} + \int{\frac{1}{4000 x} d x} + \int{\frac{1}{400 \left(x - 20\right)^{2}} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{4000} = \int{\frac{1}{400 x^{2}} d x} + \int{\frac{1}{4000 x} d x} + \int{\frac{1}{400 \left(x - 20\right)^{2}} d x} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{4000}$$

回顧一下 $$$u=x - 20$$$

$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{4000} + \int{\frac{1}{400 x^{2}} d x} + \int{\frac{1}{4000 x} d x} + \int{\frac{1}{400 \left(x - 20\right)^{2}} d x} = - \frac{\ln{\left(\left|{{\color{red}{\left(x - 20\right)}}}\right| \right)}}{4000} + \int{\frac{1}{400 x^{2}} d x} + \int{\frac{1}{4000 x} d x} + \int{\frac{1}{400 \left(x - 20\right)^{2}} d x}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{400}$$$$$$f{\left(x \right)} = \frac{1}{x^{2}}$$$

$$- \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} + \int{\frac{1}{400 \left(x - 20\right)^{2}} d x} + {\color{red}{\int{\frac{1}{400 x^{2}} d x}}} = - \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} + \int{\frac{1}{400 \left(x - 20\right)^{2}} d x} + {\color{red}{\left(\frac{\int{\frac{1}{x^{2}} d x}}{400}\right)}}$$

套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=-2$$$

$$- \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} + \int{\frac{1}{400 \left(x - 20\right)^{2}} d x} + \frac{{\color{red}{\int{\frac{1}{x^{2}} d x}}}}{400}=- \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} + \int{\frac{1}{400 \left(x - 20\right)^{2}} d x} + \frac{{\color{red}{\int{x^{-2} d x}}}}{400}=- \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} + \int{\frac{1}{400 \left(x - 20\right)^{2}} d x} + \frac{{\color{red}{\frac{x^{-2 + 1}}{-2 + 1}}}}{400}=- \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} + \int{\frac{1}{400 \left(x - 20\right)^{2}} d x} + \frac{{\color{red}{\left(- x^{-1}\right)}}}{400}=- \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} + \int{\frac{1}{400 \left(x - 20\right)^{2}} d x} + \frac{{\color{red}{\left(- \frac{1}{x}\right)}}}{400}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{400}$$$$$$f{\left(x \right)} = \frac{1}{\left(x - 20\right)^{2}}$$$

$$- \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} + {\color{red}{\int{\frac{1}{400 \left(x - 20\right)^{2}} d x}}} - \frac{1}{400 x} = - \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} + {\color{red}{\left(\frac{\int{\frac{1}{\left(x - 20\right)^{2}} d x}}{400}\right)}} - \frac{1}{400 x}$$

$$$u=x - 20$$$

$$$du=\left(x - 20\right)^{\prime }dx = 1 dx$$$ (步驟見»),並可得 $$$dx = du$$$

該積分變為

$$- \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} + \frac{{\color{red}{\int{\frac{1}{\left(x - 20\right)^{2}} d x}}}}{400} - \frac{1}{400 x} = - \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} + \frac{{\color{red}{\int{\frac{1}{u^{2}} d u}}}}{400} - \frac{1}{400 x}$$

套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=-2$$$

$$- \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} + \frac{{\color{red}{\int{\frac{1}{u^{2}} d u}}}}{400} - \frac{1}{400 x}=- \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} + \frac{{\color{red}{\int{u^{-2} d u}}}}{400} - \frac{1}{400 x}=- \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} + \frac{{\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}}{400} - \frac{1}{400 x}=- \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} + \frac{{\color{red}{\left(- u^{-1}\right)}}}{400} - \frac{1}{400 x}=- \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} + \frac{{\color{red}{\left(- \frac{1}{u}\right)}}}{400} - \frac{1}{400 x}$$

回顧一下 $$$u=x - 20$$$

$$- \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} - \frac{{\color{red}{u}}^{-1}}{400} - \frac{1}{400 x} = - \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \int{\frac{1}{4000 x} d x} - \frac{{\color{red}{\left(x - 20\right)}}^{-1}}{400} - \frac{1}{400 x}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{4000}$$$$$$f{\left(x \right)} = \frac{1}{x}$$$

$$- \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + {\color{red}{\int{\frac{1}{4000 x} d x}}} - \frac{1}{400 \left(x - 20\right)} - \frac{1}{400 x} = - \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + {\color{red}{\left(\frac{\int{\frac{1}{x} d x}}{4000}\right)}} - \frac{1}{400 \left(x - 20\right)} - \frac{1}{400 x}$$

$$$\frac{1}{x}$$$ 的積分是 $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$

$$- \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \frac{{\color{red}{\int{\frac{1}{x} d x}}}}{4000} - \frac{1}{400 \left(x - 20\right)} - \frac{1}{400 x} = - \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} + \frac{{\color{red}{\ln{\left(\left|{x}\right| \right)}}}}{4000} - \frac{1}{400 \left(x - 20\right)} - \frac{1}{400 x}$$

因此,

$$\int{\frac{1}{\left(x^{2} - 20 x\right)^{2}} d x} = \frac{\ln{\left(\left|{x}\right| \right)}}{4000} - \frac{\ln{\left(\left|{x - 20}\right| \right)}}{4000} - \frac{1}{400 \left(x - 20\right)} - \frac{1}{400 x}$$

化簡:

$$\int{\frac{1}{\left(x^{2} - 20 x\right)^{2}} d x} = \frac{x \left(x - 20\right) \left(\ln{\left(\left|{x}\right| \right)} - \ln{\left(\left|{x - 20}\right| \right)}\right) - 20 x + 200}{4000 x \left(x - 20\right)}$$

加上積分常數:

$$\int{\frac{1}{\left(x^{2} - 20 x\right)^{2}} d x} = \frac{x \left(x - 20\right) \left(\ln{\left(\left|{x}\right| \right)} - \ln{\left(\left|{x - 20}\right| \right)}\right) - 20 x + 200}{4000 x \left(x - 20\right)}+C$$

答案

$$$\int \frac{1}{\left(x^{2} - 20 x\right)^{2}}\, dx = \frac{x \left(x - 20\right) \left(\ln\left(\left|{x}\right|\right) - \ln\left(\left|{x - 20}\right|\right)\right) - 20 x + 200}{4000 x \left(x - 20\right)} + C$$$A


Please try a new game Rotatly