Funktion $$$\frac{1}{n^{\frac{3}{2}}}$$$ integraali

Laskin löytää funktion $$$\frac{1}{n^{\frac{3}{2}}}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \frac{1}{n^{\frac{3}{2}}}\, dn$$$.

Ratkaisu

Sovella potenssisääntöä $$$\int n^{n}\, dn = \frac{n^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=- \frac{3}{2}$$$:

$${\color{red}{\int{\frac{1}{n^{\frac{3}{2}}} d n}}}={\color{red}{\int{n^{- \frac{3}{2}} d n}}}={\color{red}{\frac{n^{- \frac{3}{2} + 1}}{- \frac{3}{2} + 1}}}={\color{red}{\left(- 2 n^{- \frac{1}{2}}\right)}}={\color{red}{\left(- \frac{2}{\sqrt{n}}\right)}}$$

Näin ollen,

$$\int{\frac{1}{n^{\frac{3}{2}}} d n} = - \frac{2}{\sqrt{n}}$$

Lisää integrointivakio:

$$\int{\frac{1}{n^{\frac{3}{2}}} d n} = - \frac{2}{\sqrt{n}}+C$$

Vastaus

$$$\int \frac{1}{n^{\frac{3}{2}}}\, dn = - \frac{2}{\sqrt{n}} + C$$$A


Please try a new game Rotatly