Integral of $$$\frac{1}{n^{\frac{3}{2}}}$$$

The calculator will find the integral/antiderivative of $$$\frac{1}{n^{\frac{3}{2}}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{1}{n^{\frac{3}{2}}}\, dn$$$.

Solution

Apply the power rule $$$\int n^{n}\, dn = \frac{n^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=- \frac{3}{2}$$$:

$${\color{red}{\int{\frac{1}{n^{\frac{3}{2}}} d n}}}={\color{red}{\int{n^{- \frac{3}{2}} d n}}}={\color{red}{\frac{n^{- \frac{3}{2} + 1}}{- \frac{3}{2} + 1}}}={\color{red}{\left(- 2 n^{- \frac{1}{2}}\right)}}={\color{red}{\left(- \frac{2}{\sqrt{n}}\right)}}$$

Therefore,

$$\int{\frac{1}{n^{\frac{3}{2}}} d n} = - \frac{2}{\sqrt{n}}$$

Add the constant of integration:

$$\int{\frac{1}{n^{\frac{3}{2}}} d n} = - \frac{2}{\sqrt{n}}+C$$

Answer

$$$\int \frac{1}{n^{\frac{3}{2}}}\, dn = - \frac{2}{\sqrt{n}} + C$$$A


Please try a new game Rotatly