Funktion $$$\frac{1}{2 \sqrt{x}}$$$ integraali

Laskin löytää funktion $$$\frac{1}{2 \sqrt{x}}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \frac{1}{2 \sqrt{x}}\, dx$$$.

Ratkaisu

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(x \right)} = \frac{1}{\sqrt{x}}$$$:

$${\color{red}{\int{\frac{1}{2 \sqrt{x}} d x}}} = {\color{red}{\left(\frac{\int{\frac{1}{\sqrt{x}} d x}}{2}\right)}}$$

Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=- \frac{1}{2}$$$:

$$\frac{{\color{red}{\int{\frac{1}{\sqrt{x}} d x}}}}{2}=\frac{{\color{red}{\int{x^{- \frac{1}{2}} d x}}}}{2}=\frac{{\color{red}{\frac{x^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}}{2}=\frac{{\color{red}{\left(2 x^{\frac{1}{2}}\right)}}}{2}=\frac{{\color{red}{\left(2 \sqrt{x}\right)}}}{2}$$

Näin ollen,

$$\int{\frac{1}{2 \sqrt{x}} d x} = \sqrt{x}$$

Lisää integrointivakio:

$$\int{\frac{1}{2 \sqrt{x}} d x} = \sqrt{x}+C$$

Vastaus

$$$\int \frac{1}{2 \sqrt{x}}\, dx = \sqrt{x} + C$$$A


Please try a new game Rotatly