$$$\frac{1}{2 \sqrt{x}}$$$の積分
入力内容
$$$\int \frac{1}{2 \sqrt{x}}\, dx$$$ を求めよ。
解答
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{2}$$$ と $$$f{\left(x \right)} = \frac{1}{\sqrt{x}}$$$ に対して適用する:
$${\color{red}{\int{\frac{1}{2 \sqrt{x}} d x}}} = {\color{red}{\left(\frac{\int{\frac{1}{\sqrt{x}} d x}}{2}\right)}}$$
$$$n=- \frac{1}{2}$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$\frac{{\color{red}{\int{\frac{1}{\sqrt{x}} d x}}}}{2}=\frac{{\color{red}{\int{x^{- \frac{1}{2}} d x}}}}{2}=\frac{{\color{red}{\frac{x^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}}{2}=\frac{{\color{red}{\left(2 x^{\frac{1}{2}}\right)}}}{2}=\frac{{\color{red}{\left(2 \sqrt{x}\right)}}}{2}$$
したがって、
$$\int{\frac{1}{2 \sqrt{x}} d x} = \sqrt{x}$$
積分定数を加える:
$$\int{\frac{1}{2 \sqrt{x}} d x} = \sqrt{x}+C$$
解答
$$$\int \frac{1}{2 \sqrt{x}}\, dx = \sqrt{x} + C$$$A