Funktion $$$\sin^{2}{\left(\theta \right)}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \sin^{2}{\left(\theta \right)}\, d\theta$$$.
Ratkaisu
Sovella potenssin alentamiskaavaa $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ käyttäen $$$\alpha=\theta$$$:
$${\color{red}{\int{\sin^{2}{\left(\theta \right)} d \theta}}} = {\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 \theta \right)}}{2}\right)d \theta}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(\theta \right)} = 1 - \cos{\left(2 \theta \right)}$$$:
$${\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 \theta \right)}}{2}\right)d \theta}}} = {\color{red}{\left(\frac{\int{\left(1 - \cos{\left(2 \theta \right)}\right)d \theta}}{2}\right)}}$$
Integroi termi kerrallaan:
$$\frac{{\color{red}{\int{\left(1 - \cos{\left(2 \theta \right)}\right)d \theta}}}}{2} = \frac{{\color{red}{\left(\int{1 d \theta} - \int{\cos{\left(2 \theta \right)} d \theta}\right)}}}{2}$$
Sovella vakiosääntöä $$$\int c\, d\theta = c \theta$$$ käyttäen $$$c=1$$$:
$$- \frac{\int{\cos{\left(2 \theta \right)} d \theta}}{2} + \frac{{\color{red}{\int{1 d \theta}}}}{2} = - \frac{\int{\cos{\left(2 \theta \right)} d \theta}}{2} + \frac{{\color{red}{\theta}}}{2}$$
Olkoon $$$u=2 \theta$$$.
Tällöin $$$du=\left(2 \theta\right)^{\prime }d\theta = 2 d\theta$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$d\theta = \frac{du}{2}$$$.
Integraali muuttuu muotoon
$$\frac{\theta}{2} - \frac{{\color{red}{\int{\cos{\left(2 \theta \right)} d \theta}}}}{2} = \frac{\theta}{2} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$\frac{\theta}{2} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2} = \frac{\theta}{2} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{2}$$
Kosinin integraali on $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{\theta}{2} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{4} = \frac{\theta}{2} - \frac{{\color{red}{\sin{\left(u \right)}}}}{4}$$
Muista, että $$$u=2 \theta$$$:
$$\frac{\theta}{2} - \frac{\sin{\left({\color{red}{u}} \right)}}{4} = \frac{\theta}{2} - \frac{\sin{\left({\color{red}{\left(2 \theta\right)}} \right)}}{4}$$
Näin ollen,
$$\int{\sin^{2}{\left(\theta \right)} d \theta} = \frac{\theta}{2} - \frac{\sin{\left(2 \theta \right)}}{4}$$
Lisää integrointivakio:
$$\int{\sin^{2}{\left(\theta \right)} d \theta} = \frac{\theta}{2} - \frac{\sin{\left(2 \theta \right)}}{4}+C$$
Vastaus
$$$\int \sin^{2}{\left(\theta \right)}\, d\theta = \left(\frac{\theta}{2} - \frac{\sin{\left(2 \theta \right)}}{4}\right) + C$$$A