Funktion $$$\frac{4}{x^{\frac{3}{4}}}$$$ integraali

Laskin löytää funktion $$$\frac{4}{x^{\frac{3}{4}}}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \frac{4}{x^{\frac{3}{4}}}\, dx$$$.

Ratkaisu

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=4$$$ ja $$$f{\left(x \right)} = \frac{1}{x^{\frac{3}{4}}}$$$:

$${\color{red}{\int{\frac{4}{x^{\frac{3}{4}}} d x}}} = {\color{red}{\left(4 \int{\frac{1}{x^{\frac{3}{4}}} d x}\right)}}$$

Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=- \frac{3}{4}$$$:

$$4 {\color{red}{\int{\frac{1}{x^{\frac{3}{4}}} d x}}}=4 {\color{red}{\int{x^{- \frac{3}{4}} d x}}}=4 {\color{red}{\frac{x^{- \frac{3}{4} + 1}}{- \frac{3}{4} + 1}}}=4 {\color{red}{\left(4 x^{\frac{1}{4}}\right)}}=4 {\color{red}{\left(4 \sqrt[4]{x}\right)}}$$

Näin ollen,

$$\int{\frac{4}{x^{\frac{3}{4}}} d x} = 16 \sqrt[4]{x}$$

Lisää integrointivakio:

$$\int{\frac{4}{x^{\frac{3}{4}}} d x} = 16 \sqrt[4]{x}+C$$

Vastaus

$$$\int \frac{4}{x^{\frac{3}{4}}}\, dx = 16 \sqrt[4]{x} + C$$$A


Please try a new game Rotatly