Funktion $$$\frac{4}{\sqrt{16 - x^{2}}}$$$ integraali

Laskin löytää funktion $$$\frac{4}{\sqrt{16 - x^{2}}}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \frac{4}{\sqrt{16 - x^{2}}}\, dx$$$.

Ratkaisu

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=4$$$ ja $$$f{\left(x \right)} = \frac{1}{\sqrt{16 - x^{2}}}$$$:

$${\color{red}{\int{\frac{4}{\sqrt{16 - x^{2}}} d x}}} = {\color{red}{\left(4 \int{\frac{1}{\sqrt{16 - x^{2}}} d x}\right)}}$$

Olkoon $$$x=4 \sin{\left(u \right)}$$$.

Tällöin $$$dx=\left(4 \sin{\left(u \right)}\right)^{\prime }du = 4 \cos{\left(u \right)} du$$$ (ratkaisuvaiheet ovat nähtävissä »).

Lisäksi seuraa, että $$$u=\operatorname{asin}{\left(\frac{x}{4} \right)}$$$.

Siis,

$$$\frac{1}{\sqrt{16 - x^{2}}} = \frac{1}{\sqrt{16 - 16 \sin^{2}{\left( u \right)}}}$$$

Käytä identiteettiä $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$:

$$$\frac{1}{\sqrt{16 - 16 \sin^{2}{\left( u \right)}}}=\frac{1}{4 \sqrt{1 - \sin^{2}{\left( u \right)}}}=\frac{1}{4 \sqrt{\cos^{2}{\left( u \right)}}}$$$

Olettamalla, että $$$\cos{\left( u \right)} \ge 0$$$, saamme seuraavaa:

$$$\frac{1}{4 \sqrt{\cos^{2}{\left( u \right)}}} = \frac{1}{4 \cos{\left( u \right)}}$$$

Integraali voidaan kirjoittaa uudelleen muodossa

$$4 {\color{red}{\int{\frac{1}{\sqrt{16 - x^{2}}} d x}}} = 4 {\color{red}{\int{1 d u}}}$$

Sovella vakiosääntöä $$$\int c\, du = c u$$$ käyttäen $$$c=1$$$:

$$4 {\color{red}{\int{1 d u}}} = 4 {\color{red}{u}}$$

Muista, että $$$u=\operatorname{asin}{\left(\frac{x}{4} \right)}$$$:

$$4 {\color{red}{u}} = 4 {\color{red}{\operatorname{asin}{\left(\frac{x}{4} \right)}}}$$

Näin ollen,

$$\int{\frac{4}{\sqrt{16 - x^{2}}} d x} = 4 \operatorname{asin}{\left(\frac{x}{4} \right)}$$

Lisää integrointivakio:

$$\int{\frac{4}{\sqrt{16 - x^{2}}} d x} = 4 \operatorname{asin}{\left(\frac{x}{4} \right)}+C$$

Vastaus

$$$\int \frac{4}{\sqrt{16 - x^{2}}}\, dx = 4 \operatorname{asin}{\left(\frac{x}{4} \right)} + C$$$A


Please try a new game Rotatly