$$$\frac{4}{\sqrt{16 - x^{2}}}$$$の積分
入力内容
$$$\int \frac{4}{\sqrt{16 - x^{2}}}\, dx$$$ を求めよ。
解答
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=4$$$ と $$$f{\left(x \right)} = \frac{1}{\sqrt{16 - x^{2}}}$$$ に対して適用する:
$${\color{red}{\int{\frac{4}{\sqrt{16 - x^{2}}} d x}}} = {\color{red}{\left(4 \int{\frac{1}{\sqrt{16 - x^{2}}} d x}\right)}}$$
$$$x=4 \sin{\left(u \right)}$$$ とする。
すると $$$dx=\left(4 \sin{\left(u \right)}\right)^{\prime }du = 4 \cos{\left(u \right)} du$$$ (手順は»で確認できます)。
また、$$$u=\operatorname{asin}{\left(\frac{x}{4} \right)}$$$が成り立つ。
被積分関数は次のようになる
$$$\frac{1}{\sqrt{16 - x^{2}}} = \frac{1}{\sqrt{16 - 16 \sin^{2}{\left( u \right)}}}$$$
恒等式 $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$ を用いよ:
$$$\frac{1}{\sqrt{16 - 16 \sin^{2}{\left( u \right)}}}=\frac{1}{4 \sqrt{1 - \sin^{2}{\left( u \right)}}}=\frac{1}{4 \sqrt{\cos^{2}{\left( u \right)}}}$$$
$$$\cos{\left( u \right)} \ge 0$$$ を仮定すると、以下が得られる:
$$$\frac{1}{4 \sqrt{\cos^{2}{\left( u \right)}}} = \frac{1}{4 \cos{\left( u \right)}}$$$
積分は次のようになる
$$4 {\color{red}{\int{\frac{1}{\sqrt{16 - x^{2}}} d x}}} = 4 {\color{red}{\int{1 d u}}}$$
$$$c=1$$$ に対して定数則 $$$\int c\, du = c u$$$ を適用する:
$$4 {\color{red}{\int{1 d u}}} = 4 {\color{red}{u}}$$
次のことを思い出してください $$$u=\operatorname{asin}{\left(\frac{x}{4} \right)}$$$:
$$4 {\color{red}{u}} = 4 {\color{red}{\operatorname{asin}{\left(\frac{x}{4} \right)}}}$$
したがって、
$$\int{\frac{4}{\sqrt{16 - x^{2}}} d x} = 4 \operatorname{asin}{\left(\frac{x}{4} \right)}$$
積分定数を加える:
$$\int{\frac{4}{\sqrt{16 - x^{2}}} d x} = 4 \operatorname{asin}{\left(\frac{x}{4} \right)}+C$$
解答
$$$\int \frac{4}{\sqrt{16 - x^{2}}}\, dx = 4 \operatorname{asin}{\left(\frac{x}{4} \right)} + C$$$A