Funktion $$$1 - 6 e^{2 x}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \left(1 - 6 e^{2 x}\right)\, dx$$$.
Ratkaisu
Integroi termi kerrallaan:
$${\color{red}{\int{\left(1 - 6 e^{2 x}\right)d x}}} = {\color{red}{\left(\int{1 d x} - \int{6 e^{2 x} d x}\right)}}$$
Sovella vakiosääntöä $$$\int c\, dx = c x$$$ käyttäen $$$c=1$$$:
$$- \int{6 e^{2 x} d x} + {\color{red}{\int{1 d x}}} = - \int{6 e^{2 x} d x} + {\color{red}{x}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=6$$$ ja $$$f{\left(x \right)} = e^{2 x}$$$:
$$x - {\color{red}{\int{6 e^{2 x} d x}}} = x - {\color{red}{\left(6 \int{e^{2 x} d x}\right)}}$$
Olkoon $$$u=2 x$$$.
Tällöin $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = \frac{du}{2}$$$.
Näin ollen,
$$x - 6 {\color{red}{\int{e^{2 x} d x}}} = x - 6 {\color{red}{\int{\frac{e^{u}}{2} d u}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(u \right)} = e^{u}$$$:
$$x - 6 {\color{red}{\int{\frac{e^{u}}{2} d u}}} = x - 6 {\color{red}{\left(\frac{\int{e^{u} d u}}{2}\right)}}$$
Eksponenttifunktion integraali on $$$\int{e^{u} d u} = e^{u}$$$:
$$x - 3 {\color{red}{\int{e^{u} d u}}} = x - 3 {\color{red}{e^{u}}}$$
Muista, että $$$u=2 x$$$:
$$x - 3 e^{{\color{red}{u}}} = x - 3 e^{{\color{red}{\left(2 x\right)}}}$$
Näin ollen,
$$\int{\left(1 - 6 e^{2 x}\right)d x} = x - 3 e^{2 x}$$
Lisää integrointivakio:
$$\int{\left(1 - 6 e^{2 x}\right)d x} = x - 3 e^{2 x}+C$$
Vastaus
$$$\int \left(1 - 6 e^{2 x}\right)\, dx = \left(x - 3 e^{2 x}\right) + C$$$A