Ολοκλήρωμα του $$$1 - 6 e^{2 x}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \left(1 - 6 e^{2 x}\right)\, dx$$$.
Λύση
Ολοκληρώστε όρο προς όρο:
$${\color{red}{\int{\left(1 - 6 e^{2 x}\right)d x}}} = {\color{red}{\left(\int{1 d x} - \int{6 e^{2 x} d x}\right)}}$$
Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, dx = c x$$$ με $$$c=1$$$:
$$- \int{6 e^{2 x} d x} + {\color{red}{\int{1 d x}}} = - \int{6 e^{2 x} d x} + {\color{red}{x}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=6$$$ και $$$f{\left(x \right)} = e^{2 x}$$$:
$$x - {\color{red}{\int{6 e^{2 x} d x}}} = x - {\color{red}{\left(6 \int{e^{2 x} d x}\right)}}$$
Έστω $$$u=2 x$$$.
Τότε $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = \frac{du}{2}$$$.
Επομένως,
$$x - 6 {\color{red}{\int{e^{2 x} d x}}} = x - 6 {\color{red}{\int{\frac{e^{u}}{2} d u}}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{1}{2}$$$ και $$$f{\left(u \right)} = e^{u}$$$:
$$x - 6 {\color{red}{\int{\frac{e^{u}}{2} d u}}} = x - 6 {\color{red}{\left(\frac{\int{e^{u} d u}}{2}\right)}}$$
Το ολοκλήρωμα της εκθετικής συνάρτησης είναι $$$\int{e^{u} d u} = e^{u}$$$:
$$x - 3 {\color{red}{\int{e^{u} d u}}} = x - 3 {\color{red}{e^{u}}}$$
Θυμηθείτε ότι $$$u=2 x$$$:
$$x - 3 e^{{\color{red}{u}}} = x - 3 e^{{\color{red}{\left(2 x\right)}}}$$
Επομένως,
$$\int{\left(1 - 6 e^{2 x}\right)d x} = x - 3 e^{2 x}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\left(1 - 6 e^{2 x}\right)d x} = x - 3 e^{2 x}+C$$
Απάντηση
$$$\int \left(1 - 6 e^{2 x}\right)\, dx = \left(x - 3 e^{2 x}\right) + C$$$A