Funktion $$$- e^{x} \cos{\left(x \right)}$$$ integraali

Laskin löytää funktion $$$- e^{x} \cos{\left(x \right)}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \left(- e^{x} \cos{\left(x \right)}\right)\, dx$$$.

Ratkaisu

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=-1$$$ ja $$$f{\left(x \right)} = e^{x} \cos{\left(x \right)}$$$:

$${\color{red}{\int{\left(- e^{x} \cos{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \int{e^{x} \cos{\left(x \right)} d x}\right)}}$$

Integraalin $$$\int{e^{x} \cos{\left(x \right)} d x}$$$ kohdalla käytä osittaisintegrointia $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Olkoon $$$\operatorname{u}=\cos{\left(x \right)}$$$ ja $$$\operatorname{dv}=e^{x} dx$$$.

Tällöin $$$\operatorname{du}=\left(\cos{\left(x \right)}\right)^{\prime }dx=- \sin{\left(x \right)} dx$$$ (vaiheet ovat nähtävissä ») ja $$$\operatorname{v}=\int{e^{x} d x}=e^{x}$$$ (vaiheet ovat nähtävissä »).

Integraali voidaan kirjoittaa muotoon

$$- {\color{red}{\int{e^{x} \cos{\left(x \right)} d x}}}=- {\color{red}{\left(\cos{\left(x \right)} \cdot e^{x}-\int{e^{x} \cdot \left(- \sin{\left(x \right)}\right) d x}\right)}}=- {\color{red}{\left(e^{x} \cos{\left(x \right)} - \int{\left(- e^{x} \sin{\left(x \right)}\right)d x}\right)}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=-1$$$ ja $$$f{\left(x \right)} = e^{x} \sin{\left(x \right)}$$$:

$$- e^{x} \cos{\left(x \right)} + {\color{red}{\int{\left(- e^{x} \sin{\left(x \right)}\right)d x}}} = - e^{x} \cos{\left(x \right)} + {\color{red}{\left(- \int{e^{x} \sin{\left(x \right)} d x}\right)}}$$

Integraalin $$$\int{e^{x} \sin{\left(x \right)} d x}$$$ kohdalla käytä osittaisintegrointia $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Olkoon $$$\operatorname{u}=\sin{\left(x \right)}$$$ ja $$$\operatorname{dv}=e^{x} dx$$$.

Tällöin $$$\operatorname{du}=\left(\sin{\left(x \right)}\right)^{\prime }dx=\cos{\left(x \right)} dx$$$ (vaiheet ovat nähtävissä ») ja $$$\operatorname{v}=\int{e^{x} d x}=e^{x}$$$ (vaiheet ovat nähtävissä »).

Integraali voidaan kirjoittaa muotoon

$$- e^{x} \cos{\left(x \right)} - {\color{red}{\int{e^{x} \sin{\left(x \right)} d x}}}=- e^{x} \cos{\left(x \right)} - {\color{red}{\left(\sin{\left(x \right)} \cdot e^{x}-\int{e^{x} \cdot \cos{\left(x \right)} d x}\right)}}=- e^{x} \cos{\left(x \right)} - {\color{red}{\left(e^{x} \sin{\left(x \right)} - \int{e^{x} \cos{\left(x \right)} d x}\right)}}$$

Olemme päätyneet integraaliin, jonka olemme jo aiemmin nähneet.

Näin ollen olemme saaneet seuraavan yksinkertaisen integraalia koskevan yhtälön:

$$- \int{e^{x} \cos{\left(x \right)} d x} = - e^{x} \sin{\left(x \right)} - e^{x} \cos{\left(x \right)} + \int{e^{x} \cos{\left(x \right)} d x}$$

Ratkaisemalla sen saamme, että

$$\int{e^{x} \cos{\left(x \right)} d x} = \frac{\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x}}{2}$$

Siis,

$$- {\color{red}{\int{e^{x} \cos{\left(x \right)} d x}}} = - {\color{red}{\left(\frac{\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x}}{2}\right)}}$$

Näin ollen,

$$\int{\left(- e^{x} \cos{\left(x \right)}\right)d x} = - \frac{\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x}}{2}$$

Sievennä:

$$\int{\left(- e^{x} \cos{\left(x \right)}\right)d x} = - \frac{\sqrt{2} e^{x} \sin{\left(x + \frac{\pi}{4} \right)}}{2}$$

Lisää integrointivakio:

$$\int{\left(- e^{x} \cos{\left(x \right)}\right)d x} = - \frac{\sqrt{2} e^{x} \sin{\left(x + \frac{\pi}{4} \right)}}{2}+C$$

Vastaus

$$$\int \left(- e^{x} \cos{\left(x \right)}\right)\, dx = - \frac{\sqrt{2} e^{x} \sin{\left(x + \frac{\pi}{4} \right)}}{2} + C$$$A


Please try a new game Rotatly