Integrale di $$$- e^{x} \cos{\left(x \right)}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \left(- e^{x} \cos{\left(x \right)}\right)\, dx$$$.
Soluzione
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=-1$$$ e $$$f{\left(x \right)} = e^{x} \cos{\left(x \right)}$$$:
$${\color{red}{\int{\left(- e^{x} \cos{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \int{e^{x} \cos{\left(x \right)} d x}\right)}}$$
Per l'integrale $$$\int{e^{x} \cos{\left(x \right)} d x}$$$, usa l'integrazione per parti $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Siano $$$\operatorname{u}=\cos{\left(x \right)}$$$ e $$$\operatorname{dv}=e^{x} dx$$$.
Quindi $$$\operatorname{du}=\left(\cos{\left(x \right)}\right)^{\prime }dx=- \sin{\left(x \right)} dx$$$ (i passaggi si possono vedere ») e $$$\operatorname{v}=\int{e^{x} d x}=e^{x}$$$ (i passaggi si possono vedere »).
Quindi,
$$- {\color{red}{\int{e^{x} \cos{\left(x \right)} d x}}}=- {\color{red}{\left(\cos{\left(x \right)} \cdot e^{x}-\int{e^{x} \cdot \left(- \sin{\left(x \right)}\right) d x}\right)}}=- {\color{red}{\left(e^{x} \cos{\left(x \right)} - \int{\left(- e^{x} \sin{\left(x \right)}\right)d x}\right)}}$$
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=-1$$$ e $$$f{\left(x \right)} = e^{x} \sin{\left(x \right)}$$$:
$$- e^{x} \cos{\left(x \right)} + {\color{red}{\int{\left(- e^{x} \sin{\left(x \right)}\right)d x}}} = - e^{x} \cos{\left(x \right)} + {\color{red}{\left(- \int{e^{x} \sin{\left(x \right)} d x}\right)}}$$
Per l'integrale $$$\int{e^{x} \sin{\left(x \right)} d x}$$$, usa l'integrazione per parti $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Siano $$$\operatorname{u}=\sin{\left(x \right)}$$$ e $$$\operatorname{dv}=e^{x} dx$$$.
Quindi $$$\operatorname{du}=\left(\sin{\left(x \right)}\right)^{\prime }dx=\cos{\left(x \right)} dx$$$ (i passaggi si possono vedere ») e $$$\operatorname{v}=\int{e^{x} d x}=e^{x}$$$ (i passaggi si possono vedere »).
L'integrale diventa
$$- e^{x} \cos{\left(x \right)} - {\color{red}{\int{e^{x} \sin{\left(x \right)} d x}}}=- e^{x} \cos{\left(x \right)} - {\color{red}{\left(\sin{\left(x \right)} \cdot e^{x}-\int{e^{x} \cdot \cos{\left(x \right)} d x}\right)}}=- e^{x} \cos{\left(x \right)} - {\color{red}{\left(e^{x} \sin{\left(x \right)} - \int{e^{x} \cos{\left(x \right)} d x}\right)}}$$
Siamo arrivati a un integrale che abbiamo già visto.
Pertanto, abbiamo ottenuto la seguente semplice equazione in termini dell’integrale:
$$- \int{e^{x} \cos{\left(x \right)} d x} = - e^{x} \sin{\left(x \right)} - e^{x} \cos{\left(x \right)} + \int{e^{x} \cos{\left(x \right)} d x}$$
Risolvendo, otteniamo che
$$\int{e^{x} \cos{\left(x \right)} d x} = \frac{\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x}}{2}$$
Quindi,
$$- {\color{red}{\int{e^{x} \cos{\left(x \right)} d x}}} = - {\color{red}{\left(\frac{\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x}}{2}\right)}}$$
Pertanto,
$$\int{\left(- e^{x} \cos{\left(x \right)}\right)d x} = - \frac{\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x}}{2}$$
Semplifica:
$$\int{\left(- e^{x} \cos{\left(x \right)}\right)d x} = - \frac{\sqrt{2} e^{x} \sin{\left(x + \frac{\pi}{4} \right)}}{2}$$
Aggiungi la costante di integrazione:
$$\int{\left(- e^{x} \cos{\left(x \right)}\right)d x} = - \frac{\sqrt{2} e^{x} \sin{\left(x + \frac{\pi}{4} \right)}}{2}+C$$
Risposta
$$$\int \left(- e^{x} \cos{\left(x \right)}\right)\, dx = - \frac{\sqrt{2} e^{x} \sin{\left(x + \frac{\pi}{4} \right)}}{2} + C$$$A