Funktion $$$- 3 \sin{\left(3 t \right)}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \left(- 3 \sin{\left(3 t \right)}\right)\, dt$$$.
Ratkaisu
Sovella vakiokertoimen sääntöä $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ käyttäen $$$c=-3$$$ ja $$$f{\left(t \right)} = \sin{\left(3 t \right)}$$$:
$${\color{red}{\int{\left(- 3 \sin{\left(3 t \right)}\right)d t}}} = {\color{red}{\left(- 3 \int{\sin{\left(3 t \right)} d t}\right)}}$$
Olkoon $$$u=3 t$$$.
Tällöin $$$du=\left(3 t\right)^{\prime }dt = 3 dt$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dt = \frac{du}{3}$$$.
Siis,
$$- 3 {\color{red}{\int{\sin{\left(3 t \right)} d t}}} = - 3 {\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{3}$$$ ja $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$- 3 {\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}} = - 3 {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{3}\right)}}$$
Sinifunktion integraali on $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$- {\color{red}{\int{\sin{\left(u \right)} d u}}} = - {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$
Muista, että $$$u=3 t$$$:
$$\cos{\left({\color{red}{u}} \right)} = \cos{\left({\color{red}{\left(3 t\right)}} \right)}$$
Näin ollen,
$$\int{\left(- 3 \sin{\left(3 t \right)}\right)d t} = \cos{\left(3 t \right)}$$
Lisää integrointivakio:
$$\int{\left(- 3 \sin{\left(3 t \right)}\right)d t} = \cos{\left(3 t \right)}+C$$
Vastaus
$$$\int \left(- 3 \sin{\left(3 t \right)}\right)\, dt = \cos{\left(3 t \right)} + C$$$A