Funktion $$$\frac{4 x^{4} - 15 x^{3}}{x}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \frac{4 x^{4} - 15 x^{3}}{x}\, dx$$$.
Ratkaisu
Expand the expression:
$${\color{red}{\int{\frac{4 x^{4} - 15 x^{3}}{x} d x}}} = {\color{red}{\int{\left(4 x^{3} - 15 x^{2}\right)d x}}}$$
Integroi termi kerrallaan:
$${\color{red}{\int{\left(4 x^{3} - 15 x^{2}\right)d x}}} = {\color{red}{\left(- \int{15 x^{2} d x} + \int{4 x^{3} d x}\right)}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=15$$$ ja $$$f{\left(x \right)} = x^{2}$$$:
$$\int{4 x^{3} d x} - {\color{red}{\int{15 x^{2} d x}}} = \int{4 x^{3} d x} - {\color{red}{\left(15 \int{x^{2} d x}\right)}}$$
Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=2$$$:
$$\int{4 x^{3} d x} - 15 {\color{red}{\int{x^{2} d x}}}=\int{4 x^{3} d x} - 15 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=\int{4 x^{3} d x} - 15 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=4$$$ ja $$$f{\left(x \right)} = x^{3}$$$:
$$- 5 x^{3} + {\color{red}{\int{4 x^{3} d x}}} = - 5 x^{3} + {\color{red}{\left(4 \int{x^{3} d x}\right)}}$$
Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=3$$$:
$$- 5 x^{3} + 4 {\color{red}{\int{x^{3} d x}}}=- 5 x^{3} + 4 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=- 5 x^{3} + 4 {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$
Näin ollen,
$$\int{\frac{4 x^{4} - 15 x^{3}}{x} d x} = x^{4} - 5 x^{3}$$
Sievennä:
$$\int{\frac{4 x^{4} - 15 x^{3}}{x} d x} = x^{3} \left(x - 5\right)$$
Lisää integrointivakio:
$$\int{\frac{4 x^{4} - 15 x^{3}}{x} d x} = x^{3} \left(x - 5\right)+C$$
Vastaus
$$$\int \frac{4 x^{4} - 15 x^{3}}{x}\, dx = x^{3} \left(x - 5\right) + C$$$A