Funktion $$$\frac{2 x^{3} - 6 x^{2}}{x - 2}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \frac{2 x^{3} - 6 x^{2}}{x - 2}\, dx$$$.
Ratkaisu
Yksinkertaista integroitavaa:
$${\color{red}{\int{\frac{2 x^{3} - 6 x^{2}}{x - 2} d x}}} = {\color{red}{\int{\frac{2 x^{2} \left(x - 3\right)}{x - 2} d x}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=2$$$ ja $$$f{\left(x \right)} = \frac{x^{2} \left(x - 3\right)}{x - 2}$$$:
$${\color{red}{\int{\frac{2 x^{2} \left(x - 3\right)}{x - 2} d x}}} = {\color{red}{\left(2 \int{\frac{x^{2} \left(x - 3\right)}{x - 2} d x}\right)}}$$
Koska osoittajan aste ei ole pienempi kuin nimittäjän aste, suorita polynomien jakokulma (vaiheet voidaan nähdä »):
$$2 {\color{red}{\int{\frac{x^{2} \left(x - 3\right)}{x - 2} d x}}} = 2 {\color{red}{\int{\left(x^{2} - x - 2 - \frac{4}{x - 2}\right)d x}}}$$
Integroi termi kerrallaan:
$$2 {\color{red}{\int{\left(x^{2} - x - 2 - \frac{4}{x - 2}\right)d x}}} = 2 {\color{red}{\left(- \int{2 d x} - \int{x d x} + \int{x^{2} d x} - \int{\frac{4}{x - 2} d x}\right)}}$$
Sovella vakiosääntöä $$$\int c\, dx = c x$$$ käyttäen $$$c=2$$$:
$$- 2 \int{x d x} + 2 \int{x^{2} d x} - 2 \int{\frac{4}{x - 2} d x} - 2 {\color{red}{\int{2 d x}}} = - 2 \int{x d x} + 2 \int{x^{2} d x} - 2 \int{\frac{4}{x - 2} d x} - 2 {\color{red}{\left(2 x\right)}}$$
Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=2$$$:
$$- 4 x - 2 \int{x d x} - 2 \int{\frac{4}{x - 2} d x} + 2 {\color{red}{\int{x^{2} d x}}}=- 4 x - 2 \int{x d x} - 2 \int{\frac{4}{x - 2} d x} + 2 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- 4 x - 2 \int{x d x} - 2 \int{\frac{4}{x - 2} d x} + 2 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=1$$$:
$$\frac{2 x^{3}}{3} - 4 x - 2 \int{\frac{4}{x - 2} d x} - 2 {\color{red}{\int{x d x}}}=\frac{2 x^{3}}{3} - 4 x - 2 \int{\frac{4}{x - 2} d x} - 2 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\frac{2 x^{3}}{3} - 4 x - 2 \int{\frac{4}{x - 2} d x} - 2 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=4$$$ ja $$$f{\left(x \right)} = \frac{1}{x - 2}$$$:
$$\frac{2 x^{3}}{3} - x^{2} - 4 x - 2 {\color{red}{\int{\frac{4}{x - 2} d x}}} = \frac{2 x^{3}}{3} - x^{2} - 4 x - 2 {\color{red}{\left(4 \int{\frac{1}{x - 2} d x}\right)}}$$
Olkoon $$$u=x - 2$$$.
Tällöin $$$du=\left(x - 2\right)^{\prime }dx = 1 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = du$$$.
Näin ollen,
$$\frac{2 x^{3}}{3} - x^{2} - 4 x - 8 {\color{red}{\int{\frac{1}{x - 2} d x}}} = \frac{2 x^{3}}{3} - x^{2} - 4 x - 8 {\color{red}{\int{\frac{1}{u} d u}}}$$
Funktion $$$\frac{1}{u}$$$ integraali on $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{2 x^{3}}{3} - x^{2} - 4 x - 8 {\color{red}{\int{\frac{1}{u} d u}}} = \frac{2 x^{3}}{3} - x^{2} - 4 x - 8 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Muista, että $$$u=x - 2$$$:
$$\frac{2 x^{3}}{3} - x^{2} - 4 x - 8 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \frac{2 x^{3}}{3} - x^{2} - 4 x - 8 \ln{\left(\left|{{\color{red}{\left(x - 2\right)}}}\right| \right)}$$
Näin ollen,
$$\int{\frac{2 x^{3} - 6 x^{2}}{x - 2} d x} = \frac{2 x^{3}}{3} - x^{2} - 4 x - 8 \ln{\left(\left|{x - 2}\right| \right)}$$
Lisää integrointivakio:
$$\int{\frac{2 x^{3} - 6 x^{2}}{x - 2} d x} = \frac{2 x^{3}}{3} - x^{2} - 4 x - 8 \ln{\left(\left|{x - 2}\right| \right)}+C$$
Vastaus
$$$\int \frac{2 x^{3} - 6 x^{2}}{x - 2}\, dx = \left(\frac{2 x^{3}}{3} - x^{2} - 4 x - 8 \ln\left(\left|{x - 2}\right|\right)\right) + C$$$A