Integral of $$$\frac{2 x^{3} - 6 x^{2}}{x - 2}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{2 x^{3} - 6 x^{2}}{x - 2}\, dx$$$.
Solution
Simplify the integrand:
$${\color{red}{\int{\frac{2 x^{3} - 6 x^{2}}{x - 2} d x}}} = {\color{red}{\int{\frac{2 x^{2} \left(x - 3\right)}{x - 2} d x}}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=2$$$ and $$$f{\left(x \right)} = \frac{x^{2} \left(x - 3\right)}{x - 2}$$$:
$${\color{red}{\int{\frac{2 x^{2} \left(x - 3\right)}{x - 2} d x}}} = {\color{red}{\left(2 \int{\frac{x^{2} \left(x - 3\right)}{x - 2} d x}\right)}}$$
Since the degree of the numerator is not less than the degree of the denominator, perform polynomial long division (steps can be seen »):
$$2 {\color{red}{\int{\frac{x^{2} \left(x - 3\right)}{x - 2} d x}}} = 2 {\color{red}{\int{\left(x^{2} - x - 2 - \frac{4}{x - 2}\right)d x}}}$$
Integrate term by term:
$$2 {\color{red}{\int{\left(x^{2} - x - 2 - \frac{4}{x - 2}\right)d x}}} = 2 {\color{red}{\left(- \int{2 d x} - \int{x d x} + \int{x^{2} d x} - \int{\frac{4}{x - 2} d x}\right)}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=2$$$:
$$- 2 \int{x d x} + 2 \int{x^{2} d x} - 2 \int{\frac{4}{x - 2} d x} - 2 {\color{red}{\int{2 d x}}} = - 2 \int{x d x} + 2 \int{x^{2} d x} - 2 \int{\frac{4}{x - 2} d x} - 2 {\color{red}{\left(2 x\right)}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:
$$- 4 x - 2 \int{x d x} - 2 \int{\frac{4}{x - 2} d x} + 2 {\color{red}{\int{x^{2} d x}}}=- 4 x - 2 \int{x d x} - 2 \int{\frac{4}{x - 2} d x} + 2 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- 4 x - 2 \int{x d x} - 2 \int{\frac{4}{x - 2} d x} + 2 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:
$$\frac{2 x^{3}}{3} - 4 x - 2 \int{\frac{4}{x - 2} d x} - 2 {\color{red}{\int{x d x}}}=\frac{2 x^{3}}{3} - 4 x - 2 \int{\frac{4}{x - 2} d x} - 2 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\frac{2 x^{3}}{3} - 4 x - 2 \int{\frac{4}{x - 2} d x} - 2 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=4$$$ and $$$f{\left(x \right)} = \frac{1}{x - 2}$$$:
$$\frac{2 x^{3}}{3} - x^{2} - 4 x - 2 {\color{red}{\int{\frac{4}{x - 2} d x}}} = \frac{2 x^{3}}{3} - x^{2} - 4 x - 2 {\color{red}{\left(4 \int{\frac{1}{x - 2} d x}\right)}}$$
Let $$$u=x - 2$$$.
Then $$$du=\left(x - 2\right)^{\prime }dx = 1 dx$$$ (steps can be seen »), and we have that $$$dx = du$$$.
Therefore,
$$\frac{2 x^{3}}{3} - x^{2} - 4 x - 8 {\color{red}{\int{\frac{1}{x - 2} d x}}} = \frac{2 x^{3}}{3} - x^{2} - 4 x - 8 {\color{red}{\int{\frac{1}{u} d u}}}$$
The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{2 x^{3}}{3} - x^{2} - 4 x - 8 {\color{red}{\int{\frac{1}{u} d u}}} = \frac{2 x^{3}}{3} - x^{2} - 4 x - 8 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Recall that $$$u=x - 2$$$:
$$\frac{2 x^{3}}{3} - x^{2} - 4 x - 8 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \frac{2 x^{3}}{3} - x^{2} - 4 x - 8 \ln{\left(\left|{{\color{red}{\left(x - 2\right)}}}\right| \right)}$$
Therefore,
$$\int{\frac{2 x^{3} - 6 x^{2}}{x - 2} d x} = \frac{2 x^{3}}{3} - x^{2} - 4 x - 8 \ln{\left(\left|{x - 2}\right| \right)}$$
Add the constant of integration:
$$\int{\frac{2 x^{3} - 6 x^{2}}{x - 2} d x} = \frac{2 x^{3}}{3} - x^{2} - 4 x - 8 \ln{\left(\left|{x - 2}\right| \right)}+C$$
Answer
$$$\int \frac{2 x^{3} - 6 x^{2}}{x - 2}\, dx = \left(\frac{2 x^{3}}{3} - x^{2} - 4 x - 8 \ln\left(\left|{x - 2}\right|\right)\right) + C$$$A