Määrättyjen ja epäoleellisten integraalien laskin
Laske määrättyjä ja epäoleellisia integraaleja askel askeleelta
Laskin yrittää laskea määrätyn (eli rajoilla varustetun) integraalin, mukaan lukien epäoleelliset tapaukset, ja näyttää välivaiheet.
Solution
Your input: calculate $$$\int_{x}^{a}\left( \frac{1}{x^{2}} \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{\frac{1}{x^{2}} d x}=- \frac{1}{x}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(- \frac{1}{x}\right)|_{\left(x=a\right)}=- \frac{1}{a}$$$
$$$\left(- \frac{1}{x}\right)|_{\left(x=x\right)}=- \frac{1}{x}$$$
$$$\int_{x}^{a}\left( \frac{1}{x^{2}} \right)dx=\left(- \frac{1}{x}\right)|_{\left(x=a\right)}-\left(- \frac{1}{x}\right)|_{\left(x=x\right)}=\frac{1}{x} - \frac{1}{a}$$$
Answer: $$$\int_{x}^{a}\left( \frac{1}{x^{2}} \right)dx=\frac{1}{x} - \frac{1}{a}$$$