Määrättyjen ja epäoleellisten integraalien laskin
Laske määrättyjä ja epäoleellisia integraaleja askel askeleelta
Laskin yrittää laskea määrätyn (eli rajoilla varustetun) integraalin, mukaan lukien epäoleelliset tapaukset, ja näyttää välivaiheet.
Solution
Your input: calculate $$$\int_{o}^{t}\left( \omega t \cos{\left(2 \right)} \right)dt$$$
First, calculate the corresponding indefinite integral: $$$\int{\omega t \cos{\left(2 \right)} d t}=\frac{\omega t^{2} \cos{\left(2 \right)}}{2}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(\frac{\omega t^{2} \cos{\left(2 \right)}}{2}\right)|_{\left(t=t\right)}=\frac{\omega t^{2} \cos{\left(2 \right)}}{2}$$$
$$$\left(\frac{\omega t^{2} \cos{\left(2 \right)}}{2}\right)|_{\left(t=o\right)}=\frac{o^{2} \omega \cos{\left(2 \right)}}{2}$$$
$$$\int_{o}^{t}\left( \omega t \cos{\left(2 \right)} \right)dt=\left(\frac{\omega t^{2} \cos{\left(2 \right)}}{2}\right)|_{\left(t=t\right)}-\left(\frac{\omega t^{2} \cos{\left(2 \right)}}{2}\right)|_{\left(t=o\right)}=- \frac{o^{2} \omega \cos{\left(2 \right)}}{2} + \frac{\omega t^{2} \cos{\left(2 \right)}}{2}$$$
Answer: $$$\int_{o}^{t}\left( \omega t \cos{\left(2 \right)} \right)dt=- \frac{o^{2} \omega \cos{\left(2 \right)}}{2} + \frac{\omega t^{2} \cos{\left(2 \right)}}{2}$$$