Määrättyjen ja epäoleellisten integraalien laskin
Laske määrättyjä ja epäoleellisia integraaleja askel askeleelta
Laskin yrittää laskea määrätyn (eli rajoilla varustetun) integraalin, mukaan lukien epäoleelliset tapaukset, ja näyttää välivaiheet.
Solution
Your input: calculate $$$\int_{0}^{\pi}\left( \sin{\left(x^{2} \right)} \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{\sin{\left(x^{2} \right)} d x}=\frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(\frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}\right)|_{\left(x=\pi\right)}=\frac{\sqrt{2} \sqrt{\pi} S\left(\sqrt{2} \sqrt{\pi}\right)}{2}$$$
$$$\left(\frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}\right)|_{\left(x=0\right)}=0$$$
$$$\int_{0}^{\pi}\left( \sin{\left(x^{2} \right)} \right)dx=\left(\frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}\right)|_{\left(x=\pi\right)}-\left(\frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}\right)|_{\left(x=0\right)}=\frac{\sqrt{2} \sqrt{\pi} S\left(\sqrt{2} \sqrt{\pi}\right)}{2}$$$
Answer: $$$\int_{0}^{\pi}\left( \sin{\left(x^{2} \right)} \right)dx=\frac{\sqrt{2} \sqrt{\pi} S\left(\sqrt{2} \sqrt{\pi}\right)}{2}\approx 0.772651712690066$$$