Määrättyjen ja epäoleellisten integraalien laskin

Laske määrättyjä ja epäoleellisia integraaleja askel askeleelta

Laskin yrittää laskea määrätyn (eli rajoilla varustetun) integraalin, mukaan lukien epäoleelliset tapaukset, ja näyttää välivaiheet.

Enter a function:

Integrate with respect to:

Enter a lower limit:

If you need `-oo`, type -inf.

Enter an upper limit:

If you need `oo`, type inf.

Please write without any differentials such as `dx`, `dy` etc.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: calculate $$$\int_{0}^{2}\left( x^{3} - x^{2} - 2 x \right)dx$$$

First, calculate the corresponding indefinite integral: $$$\int{\left(x^{3} - x^{2} - 2 x\right)d x}=x^{2} \left(\frac{x^{2}}{4} - \frac{x}{3} - 1\right)$$$ (for steps, see indefinite integral calculator)

According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.

$$$\left(x^{2} \left(\frac{x^{2}}{4} - \frac{x}{3} - 1\right)\right)|_{\left(x=2\right)}=- \frac{8}{3}$$$

$$$\left(x^{2} \left(\frac{x^{2}}{4} - \frac{x}{3} - 1\right)\right)|_{\left(x=0\right)}=0$$$

$$$\int_{0}^{2}\left( x^{3} - x^{2} - 2 x \right)dx=\left(x^{2} \left(\frac{x^{2}}{4} - \frac{x}{3} - 1\right)\right)|_{\left(x=2\right)}-\left(x^{2} \left(\frac{x^{2}}{4} - \frac{x}{3} - 1\right)\right)|_{\left(x=0\right)}=- \frac{8}{3}$$$

Answer: $$$\int_{0}^{2}\left( x^{3} - x^{2} - 2 x \right)dx=- \frac{8}{3}\approx -2.66666666666667$$$


Please try a new game Rotatly