Määrättyjen ja epäoleellisten integraalien laskin
Laske määrättyjä ja epäoleellisia integraaleja askel askeleelta
Laskin yrittää laskea määrätyn (eli rajoilla varustetun) integraalin, mukaan lukien epäoleelliset tapaukset, ja näyttää välivaiheet.
Solution
Your input: calculate $$$\int_{0}^{1}\left( - \sin{\left(1 \right)} \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{\left(- \sin{\left(1 \right)}\right)d x}=- x \sin{\left(1 \right)}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(- x \sin{\left(1 \right)}\right)|_{\left(x=1\right)}=- \sin{\left(1 \right)}$$$
$$$\left(- x \sin{\left(1 \right)}\right)|_{\left(x=0\right)}=0$$$
$$$\int_{0}^{1}\left( - \sin{\left(1 \right)} \right)dx=\left(- x \sin{\left(1 \right)}\right)|_{\left(x=1\right)}-\left(- x \sin{\left(1 \right)}\right)|_{\left(x=0\right)}=- \sin{\left(1 \right)}$$$
Answer: $$$\int_{0}^{1}\left( - \sin{\left(1 \right)} \right)dx=- \sin{\left(1 \right)}\approx -0.841470984807897$$$