Määrättyjen ja epäoleellisten integraalien laskin
Laske määrättyjä ja epäoleellisia integraaleja askel askeleelta
Laskin yrittää laskea määrätyn (eli rajoilla varustetun) integraalin, mukaan lukien epäoleelliset tapaukset, ja näyttää välivaiheet.
Solution
Your input: calculate $$$\int_{-3}^{5}\left( \cos{\left(x \right)} \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{\cos{\left(x \right)} d x}=\sin{\left(x \right)}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(\sin{\left(x \right)}\right)|_{\left(x=5\right)}=\sin{\left(5 \right)}$$$
$$$\left(\sin{\left(x \right)}\right)|_{\left(x=-3\right)}=- \sin{\left(3 \right)}$$$
$$$\int_{-3}^{5}\left( \cos{\left(x \right)} \right)dx=\left(\sin{\left(x \right)}\right)|_{\left(x=5\right)}-\left(\sin{\left(x \right)}\right)|_{\left(x=-3\right)}=\sin{\left(5 \right)} + \sin{\left(3 \right)}$$$
Answer: $$$\int_{-3}^{5}\left( \cos{\left(x \right)} \right)dx=\sin{\left(5 \right)} + \sin{\left(3 \right)}\approx -0.817804266603271$$$