Funktion $$$\tanh{\left(x \right)}$$$ toinen derivaatta
Aiheeseen liittyvät laskurit: Derivointilaskin, Logaritmisen derivoinnin laskin
Syötteesi
Määritä $$$\frac{d^{2}}{dx^{2}} \left(\tanh{\left(x \right)}\right)$$$.
Ratkaisu
Laske ensimmäinen derivaatta $$$\frac{d}{dx} \left(\tanh{\left(x \right)}\right)$$$
Hyperbolisen tangentin derivaatta on $$$\frac{d}{dx} \left(\tanh{\left(x \right)}\right) = \operatorname{sech}^{2}{\left(x \right)}$$$:
$${\color{red}\left(\frac{d}{dx} \left(\tanh{\left(x \right)}\right)\right)} = {\color{red}\left(\operatorname{sech}^{2}{\left(x \right)}\right)}$$Näin ollen, $$$\frac{d}{dx} \left(\tanh{\left(x \right)}\right) = \operatorname{sech}^{2}{\left(x \right)}$$$.
Seuraavaksi $$$\frac{d^{2}}{dx^{2}} \left(\tanh{\left(x \right)}\right) = \frac{d}{dx} \left(\operatorname{sech}^{2}{\left(x \right)}\right)$$$
Funktio $$$\operatorname{sech}^{2}{\left(x \right)}$$$ on kahden funktion $$$f{\left(u \right)} = u^{2}$$$ ja $$$g{\left(x \right)} = \operatorname{sech}{\left(x \right)}$$$ yhdistelmä $$$f{\left(g{\left(x \right)} \right)}$$$.
Sovella ketjusääntöä $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\operatorname{sech}^{2}{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(u^{2}\right) \frac{d}{dx} \left(\operatorname{sech}{\left(x \right)}\right)\right)}$$Sovella potenssisääntöä $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$, kun $$$n = 2$$$:
$${\color{red}\left(\frac{d}{du} \left(u^{2}\right)\right)} \frac{d}{dx} \left(\operatorname{sech}{\left(x \right)}\right) = {\color{red}\left(2 u\right)} \frac{d}{dx} \left(\operatorname{sech}{\left(x \right)}\right)$$Palaa alkuperäiseen muuttujaan:
$$2 {\color{red}\left(u\right)} \frac{d}{dx} \left(\operatorname{sech}{\left(x \right)}\right) = 2 {\color{red}\left(\operatorname{sech}{\left(x \right)}\right)} \frac{d}{dx} \left(\operatorname{sech}{\left(x \right)}\right)$$Hyperbolisen sekantin derivaatta on $$$\frac{d}{dx} \left(\operatorname{sech}{\left(x \right)}\right) = - \tanh{\left(x \right)} \operatorname{sech}{\left(x \right)}$$$:
$$2 \operatorname{sech}{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(\operatorname{sech}{\left(x \right)}\right)\right)} = 2 \operatorname{sech}{\left(x \right)} {\color{red}\left(- \tanh{\left(x \right)} \operatorname{sech}{\left(x \right)}\right)}$$Näin ollen, $$$\frac{d}{dx} \left(\operatorname{sech}^{2}{\left(x \right)}\right) = - 2 \tanh{\left(x \right)} \operatorname{sech}^{2}{\left(x \right)}.$$$
Siispä $$$\frac{d^{2}}{dx^{2}} \left(\tanh{\left(x \right)}\right) = - 2 \tanh{\left(x \right)} \operatorname{sech}^{2}{\left(x \right)}$$$.
Vastaus
$$$\frac{d^{2}}{dx^{2}} \left(\tanh{\left(x \right)}\right) = - 2 \tanh{\left(x \right)} \operatorname{sech}^{2}{\left(x \right)}$$$A