$$$\tanh{\left(x \right)}$$$'nin ikinci türevi
İlgili hesaplayıcılar: Türev Hesaplayıcı, Logaritmik Türev Hesaplayıcı
Girdiniz
Bulun: $$$\frac{d^{2}}{dx^{2}} \left(\tanh{\left(x \right)}\right)$$$.
Çözüm
Birinci türevi bulun $$$\frac{d}{dx} \left(\tanh{\left(x \right)}\right)$$$
Hiperbolik tanjantın türevi $$$\frac{d}{dx} \left(\tanh{\left(x \right)}\right) = \operatorname{sech}^{2}{\left(x \right)}$$$:
$${\color{red}\left(\frac{d}{dx} \left(\tanh{\left(x \right)}\right)\right)} = {\color{red}\left(\operatorname{sech}^{2}{\left(x \right)}\right)}$$Dolayısıyla, $$$\frac{d}{dx} \left(\tanh{\left(x \right)}\right) = \operatorname{sech}^{2}{\left(x \right)}$$$.
Ardından, $$$\frac{d^{2}}{dx^{2}} \left(\tanh{\left(x \right)}\right) = \frac{d}{dx} \left(\operatorname{sech}^{2}{\left(x \right)}\right)$$$
$$$\operatorname{sech}^{2}{\left(x \right)}$$$ fonksiyonu, iki fonksiyon $$$f{\left(u \right)} = u^{2}$$$ ve $$$g{\left(x \right)} = \operatorname{sech}{\left(x \right)}$$$'nin $$$f{\left(g{\left(x \right)} \right)}$$$ bileşimidir.
Zincir kuralını $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ uygulayın:
$${\color{red}\left(\frac{d}{dx} \left(\operatorname{sech}^{2}{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(u^{2}\right) \frac{d}{dx} \left(\operatorname{sech}{\left(x \right)}\right)\right)}$$$$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ şeklindeki kuvvet kuralını $$$n = 2$$$ ile uygula:
$${\color{red}\left(\frac{d}{du} \left(u^{2}\right)\right)} \frac{d}{dx} \left(\operatorname{sech}{\left(x \right)}\right) = {\color{red}\left(2 u\right)} \frac{d}{dx} \left(\operatorname{sech}{\left(x \right)}\right)$$Eski değişkene geri dön:
$$2 {\color{red}\left(u\right)} \frac{d}{dx} \left(\operatorname{sech}{\left(x \right)}\right) = 2 {\color{red}\left(\operatorname{sech}{\left(x \right)}\right)} \frac{d}{dx} \left(\operatorname{sech}{\left(x \right)}\right)$$Hiperbolik sekantın türevi $$$\frac{d}{dx} \left(\operatorname{sech}{\left(x \right)}\right) = - \tanh{\left(x \right)} \operatorname{sech}{\left(x \right)}$$$:
$$2 \operatorname{sech}{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(\operatorname{sech}{\left(x \right)}\right)\right)} = 2 \operatorname{sech}{\left(x \right)} {\color{red}\left(- \tanh{\left(x \right)} \operatorname{sech}{\left(x \right)}\right)}$$Dolayısıyla, $$$\frac{d}{dx} \left(\operatorname{sech}^{2}{\left(x \right)}\right) = - 2 \tanh{\left(x \right)} \operatorname{sech}^{2}{\left(x \right)}.$$$
Dolayısıyla, $$$\frac{d^{2}}{dx^{2}} \left(\tanh{\left(x \right)}\right) = - 2 \tanh{\left(x \right)} \operatorname{sech}^{2}{\left(x \right)}$$$.
Cevap
$$$\frac{d^{2}}{dx^{2}} \left(\tanh{\left(x \right)}\right) = - 2 \tanh{\left(x \right)} \operatorname{sech}^{2}{\left(x \right)}$$$A