$$$\tanh{\left(x \right)}$$$'nin ikinci türevi

Hesaplayıcı, adımları göstererek $$$\tanh{\left(x \right)}$$$'in ikinci türevini bulacaktır.

İlgili hesaplayıcılar: Türev Hesaplayıcı, Logaritmik Türev Hesaplayıcı

Otomatik algılama için boş bırakın.
Belirli bir noktadaki türeve ihtiyacınız yoksa boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\frac{d^{2}}{dx^{2}} \left(\tanh{\left(x \right)}\right)$$$.

Çözüm

Birinci türevi bulun $$$\frac{d}{dx} \left(\tanh{\left(x \right)}\right)$$$

Hiperbolik tanjantın türevi $$$\frac{d}{dx} \left(\tanh{\left(x \right)}\right) = \operatorname{sech}^{2}{\left(x \right)}$$$:

$${\color{red}\left(\frac{d}{dx} \left(\tanh{\left(x \right)}\right)\right)} = {\color{red}\left(\operatorname{sech}^{2}{\left(x \right)}\right)}$$

Dolayısıyla, $$$\frac{d}{dx} \left(\tanh{\left(x \right)}\right) = \operatorname{sech}^{2}{\left(x \right)}$$$.

Ardından, $$$\frac{d^{2}}{dx^{2}} \left(\tanh{\left(x \right)}\right) = \frac{d}{dx} \left(\operatorname{sech}^{2}{\left(x \right)}\right)$$$

$$$\operatorname{sech}^{2}{\left(x \right)}$$$ fonksiyonu, iki fonksiyon $$$f{\left(u \right)} = u^{2}$$$ ve $$$g{\left(x \right)} = \operatorname{sech}{\left(x \right)}$$$'nin $$$f{\left(g{\left(x \right)} \right)}$$$ bileşimidir.

Zincir kuralını $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ uygulayın:

$${\color{red}\left(\frac{d}{dx} \left(\operatorname{sech}^{2}{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(u^{2}\right) \frac{d}{dx} \left(\operatorname{sech}{\left(x \right)}\right)\right)}$$

$$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ şeklindeki kuvvet kuralını $$$n = 2$$$ ile uygula:

$${\color{red}\left(\frac{d}{du} \left(u^{2}\right)\right)} \frac{d}{dx} \left(\operatorname{sech}{\left(x \right)}\right) = {\color{red}\left(2 u\right)} \frac{d}{dx} \left(\operatorname{sech}{\left(x \right)}\right)$$

Eski değişkene geri dön:

$$2 {\color{red}\left(u\right)} \frac{d}{dx} \left(\operatorname{sech}{\left(x \right)}\right) = 2 {\color{red}\left(\operatorname{sech}{\left(x \right)}\right)} \frac{d}{dx} \left(\operatorname{sech}{\left(x \right)}\right)$$

Hiperbolik sekantın türevi $$$\frac{d}{dx} \left(\operatorname{sech}{\left(x \right)}\right) = - \tanh{\left(x \right)} \operatorname{sech}{\left(x \right)}$$$:

$$2 \operatorname{sech}{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(\operatorname{sech}{\left(x \right)}\right)\right)} = 2 \operatorname{sech}{\left(x \right)} {\color{red}\left(- \tanh{\left(x \right)} \operatorname{sech}{\left(x \right)}\right)}$$

Dolayısıyla, $$$\frac{d}{dx} \left(\operatorname{sech}^{2}{\left(x \right)}\right) = - 2 \tanh{\left(x \right)} \operatorname{sech}^{2}{\left(x \right)}.$$$

Dolayısıyla, $$$\frac{d^{2}}{dx^{2}} \left(\tanh{\left(x \right)}\right) = - 2 \tanh{\left(x \right)} \operatorname{sech}^{2}{\left(x \right)}$$$.

Cevap

$$$\frac{d^{2}}{dx^{2}} \left(\tanh{\left(x \right)}\right) = - 2 \tanh{\left(x \right)} \operatorname{sech}^{2}{\left(x \right)}$$$A


Please try a new game Rotatly