Turunan kedua dari $$$\tanh{\left(x \right)}$$$
Kalkulator terkait: Kalkulator Turunan, Kalkulator Diferensiasi Logaritmik
Masukan Anda
Temukan $$$\frac{d^{2}}{dx^{2}} \left(\tanh{\left(x \right)}\right)$$$.
Solusi
Tentukan turunan pertama $$$\frac{d}{dx} \left(\tanh{\left(x \right)}\right)$$$
Turunan tangen hiperbolik adalah $$$\frac{d}{dx} \left(\tanh{\left(x \right)}\right) = \operatorname{sech}^{2}{\left(x \right)}$$$:
$${\color{red}\left(\frac{d}{dx} \left(\tanh{\left(x \right)}\right)\right)} = {\color{red}\left(\operatorname{sech}^{2}{\left(x \right)}\right)}$$Dengan demikian, $$$\frac{d}{dx} \left(\tanh{\left(x \right)}\right) = \operatorname{sech}^{2}{\left(x \right)}$$$.
Selanjutnya, $$$\frac{d^{2}}{dx^{2}} \left(\tanh{\left(x \right)}\right) = \frac{d}{dx} \left(\operatorname{sech}^{2}{\left(x \right)}\right)$$$
Fungsi $$$\operatorname{sech}^{2}{\left(x \right)}$$$ merupakan komposisi $$$f{\left(g{\left(x \right)} \right)}$$$ dari dua fungsi $$$f{\left(u \right)} = u^{2}$$$ dan $$$g{\left(x \right)} = \operatorname{sech}{\left(x \right)}$$$.
Terapkan aturan rantai $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\operatorname{sech}^{2}{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(u^{2}\right) \frac{d}{dx} \left(\operatorname{sech}{\left(x \right)}\right)\right)}$$Terapkan aturan pangkat $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ dengan $$$n = 2$$$:
$${\color{red}\left(\frac{d}{du} \left(u^{2}\right)\right)} \frac{d}{dx} \left(\operatorname{sech}{\left(x \right)}\right) = {\color{red}\left(2 u\right)} \frac{d}{dx} \left(\operatorname{sech}{\left(x \right)}\right)$$Kembalikan ke variabel semula:
$$2 {\color{red}\left(u\right)} \frac{d}{dx} \left(\operatorname{sech}{\left(x \right)}\right) = 2 {\color{red}\left(\operatorname{sech}{\left(x \right)}\right)} \frac{d}{dx} \left(\operatorname{sech}{\left(x \right)}\right)$$Turunan dari sekan hiperbolik adalah $$$\frac{d}{dx} \left(\operatorname{sech}{\left(x \right)}\right) = - \tanh{\left(x \right)} \operatorname{sech}{\left(x \right)}$$$:
$$2 \operatorname{sech}{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(\operatorname{sech}{\left(x \right)}\right)\right)} = 2 \operatorname{sech}{\left(x \right)} {\color{red}\left(- \tanh{\left(x \right)} \operatorname{sech}{\left(x \right)}\right)}$$Dengan demikian, $$$\frac{d}{dx} \left(\operatorname{sech}^{2}{\left(x \right)}\right) = - 2 \tanh{\left(x \right)} \operatorname{sech}^{2}{\left(x \right)}.$$$
Oleh karena itu, $$$\frac{d^{2}}{dx^{2}} \left(\tanh{\left(x \right)}\right) = - 2 \tanh{\left(x \right)} \operatorname{sech}^{2}{\left(x \right)}$$$.
Jawaban
$$$\frac{d^{2}}{dx^{2}} \left(\tanh{\left(x \right)}\right) = - 2 \tanh{\left(x \right)} \operatorname{sech}^{2}{\left(x \right)}$$$A