Integral de $$$\sin^{6}{\left(x \right)}$$$

La calculadora encontrará la integral/antiderivada de $$$\sin^{6}{\left(x \right)}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \sin^{6}{\left(x \right)}\, dx$$$.

Solución

Aplica la fórmula de reducción de potencia $$$\sin^{6}{\left(\alpha \right)} = - \frac{15 \cos{\left(2 \alpha \right)}}{32} + \frac{3 \cos{\left(4 \alpha \right)}}{16} - \frac{\cos{\left(6 \alpha \right)}}{32} + \frac{5}{16}$$$ con $$$\alpha=x$$$:

$${\color{red}{\int{\sin^{6}{\left(x \right)} d x}}} = {\color{red}{\int{\left(- \frac{15 \cos{\left(2 x \right)}}{32} + \frac{3 \cos{\left(4 x \right)}}{16} - \frac{\cos{\left(6 x \right)}}{32} + \frac{5}{16}\right)d x}}}$$

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{32}$$$ y $$$f{\left(x \right)} = - 15 \cos{\left(2 x \right)} + 6 \cos{\left(4 x \right)} - \cos{\left(6 x \right)} + 10$$$:

$${\color{red}{\int{\left(- \frac{15 \cos{\left(2 x \right)}}{32} + \frac{3 \cos{\left(4 x \right)}}{16} - \frac{\cos{\left(6 x \right)}}{32} + \frac{5}{16}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(- 15 \cos{\left(2 x \right)} + 6 \cos{\left(4 x \right)} - \cos{\left(6 x \right)} + 10\right)d x}}{32}\right)}}$$

Integra término a término:

$$\frac{{\color{red}{\int{\left(- 15 \cos{\left(2 x \right)} + 6 \cos{\left(4 x \right)} - \cos{\left(6 x \right)} + 10\right)d x}}}}{32} = \frac{{\color{red}{\left(\int{10 d x} - \int{15 \cos{\left(2 x \right)} d x} + \int{6 \cos{\left(4 x \right)} d x} - \int{\cos{\left(6 x \right)} d x}\right)}}}{32}$$

Aplica la regla de la constante $$$\int c\, dx = c x$$$ con $$$c=10$$$:

$$- \frac{\int{15 \cos{\left(2 x \right)} d x}}{32} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{\int{\cos{\left(6 x \right)} d x}}{32} + \frac{{\color{red}{\int{10 d x}}}}{32} = - \frac{\int{15 \cos{\left(2 x \right)} d x}}{32} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{\int{\cos{\left(6 x \right)} d x}}{32} + \frac{{\color{red}{\left(10 x\right)}}}{32}$$

Sea $$$u=6 x$$$.

Entonces $$$du=\left(6 x\right)^{\prime }dx = 6 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = \frac{du}{6}$$$.

La integral puede reescribirse como

$$\frac{5 x}{16} - \frac{\int{15 \cos{\left(2 x \right)} d x}}{32} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{{\color{red}{\int{\cos{\left(6 x \right)} d x}}}}{32} = \frac{5 x}{16} - \frac{\int{15 \cos{\left(2 x \right)} d x}}{32} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{6} d u}}}}{32}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{6}$$$ y $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$\frac{5 x}{16} - \frac{\int{15 \cos{\left(2 x \right)} d x}}{32} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{6} d u}}}}{32} = \frac{5 x}{16} - \frac{\int{15 \cos{\left(2 x \right)} d x}}{32} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{6}\right)}}}{32}$$

La integral del coseno es $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{5 x}{16} - \frac{\int{15 \cos{\left(2 x \right)} d x}}{32} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{192} = \frac{5 x}{16} - \frac{\int{15 \cos{\left(2 x \right)} d x}}{32} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{{\color{red}{\sin{\left(u \right)}}}}{192}$$

Recordemos que $$$u=6 x$$$:

$$\frac{5 x}{16} - \frac{\int{15 \cos{\left(2 x \right)} d x}}{32} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{\sin{\left({\color{red}{u}} \right)}}{192} = \frac{5 x}{16} - \frac{\int{15 \cos{\left(2 x \right)} d x}}{32} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{\sin{\left({\color{red}{\left(6 x\right)}} \right)}}{192}$$

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=15$$$ y $$$f{\left(x \right)} = \cos{\left(2 x \right)}$$$:

$$\frac{5 x}{16} - \frac{\sin{\left(6 x \right)}}{192} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{{\color{red}{\int{15 \cos{\left(2 x \right)} d x}}}}{32} = \frac{5 x}{16} - \frac{\sin{\left(6 x \right)}}{192} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{{\color{red}{\left(15 \int{\cos{\left(2 x \right)} d x}\right)}}}{32}$$

Sea $$$u=2 x$$$.

Entonces $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = \frac{du}{2}$$$.

Entonces,

$$\frac{5 x}{16} - \frac{\sin{\left(6 x \right)}}{192} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{15 {\color{red}{\int{\cos{\left(2 x \right)} d x}}}}{32} = \frac{5 x}{16} - \frac{\sin{\left(6 x \right)}}{192} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{15 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{32}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$\frac{5 x}{16} - \frac{\sin{\left(6 x \right)}}{192} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{15 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{32} = \frac{5 x}{16} - \frac{\sin{\left(6 x \right)}}{192} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{15 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{32}$$

La integral del coseno es $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{5 x}{16} - \frac{\sin{\left(6 x \right)}}{192} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{15 {\color{red}{\int{\cos{\left(u \right)} d u}}}}{64} = \frac{5 x}{16} - \frac{\sin{\left(6 x \right)}}{192} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{15 {\color{red}{\sin{\left(u \right)}}}}{64}$$

Recordemos que $$$u=2 x$$$:

$$\frac{5 x}{16} - \frac{\sin{\left(6 x \right)}}{192} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{15 \sin{\left({\color{red}{u}} \right)}}{64} = \frac{5 x}{16} - \frac{\sin{\left(6 x \right)}}{192} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{15 \sin{\left({\color{red}{\left(2 x\right)}} \right)}}{64}$$

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=6$$$ y $$$f{\left(x \right)} = \cos{\left(4 x \right)}$$$:

$$\frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192} + \frac{{\color{red}{\int{6 \cos{\left(4 x \right)} d x}}}}{32} = \frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192} + \frac{{\color{red}{\left(6 \int{\cos{\left(4 x \right)} d x}\right)}}}{32}$$

Sea $$$u=4 x$$$.

Entonces $$$du=\left(4 x\right)^{\prime }dx = 4 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = \frac{du}{4}$$$.

Por lo tanto,

$$\frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192} + \frac{3 {\color{red}{\int{\cos{\left(4 x \right)} d x}}}}{16} = \frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192} + \frac{3 {\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{16}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{4}$$$ y $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$\frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192} + \frac{3 {\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{16} = \frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192} + \frac{3 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{16}$$

La integral del coseno es $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192} + \frac{3 {\color{red}{\int{\cos{\left(u \right)} d u}}}}{64} = \frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192} + \frac{3 {\color{red}{\sin{\left(u \right)}}}}{64}$$

Recordemos que $$$u=4 x$$$:

$$\frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192} + \frac{3 \sin{\left({\color{red}{u}} \right)}}{64} = \frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192} + \frac{3 \sin{\left({\color{red}{\left(4 x\right)}} \right)}}{64}$$

Por lo tanto,

$$\int{\sin^{6}{\left(x \right)} d x} = \frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} + \frac{3 \sin{\left(4 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192}$$

Simplificar:

$$\int{\sin^{6}{\left(x \right)} d x} = \frac{60 x - 45 \sin{\left(2 x \right)} + 9 \sin{\left(4 x \right)} - \sin{\left(6 x \right)}}{192}$$

Añade la constante de integración:

$$\int{\sin^{6}{\left(x \right)} d x} = \frac{60 x - 45 \sin{\left(2 x \right)} + 9 \sin{\left(4 x \right)} - \sin{\left(6 x \right)}}{192}+C$$

Respuesta

$$$\int \sin^{6}{\left(x \right)}\, dx = \frac{60 x - 45 \sin{\left(2 x \right)} + 9 \sin{\left(4 x \right)} - \sin{\left(6 x \right)}}{192} + C$$$A


Please try a new game Rotatly