Integralen av $$$\sin^{6}{\left(x \right)}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \sin^{6}{\left(x \right)}\, dx$$$.
Lösning
Använd potensreduceringsformeln $$$\sin^{6}{\left(\alpha \right)} = - \frac{15 \cos{\left(2 \alpha \right)}}{32} + \frac{3 \cos{\left(4 \alpha \right)}}{16} - \frac{\cos{\left(6 \alpha \right)}}{32} + \frac{5}{16}$$$ med $$$\alpha=x$$$:
$${\color{red}{\int{\sin^{6}{\left(x \right)} d x}}} = {\color{red}{\int{\left(- \frac{15 \cos{\left(2 x \right)}}{32} + \frac{3 \cos{\left(4 x \right)}}{16} - \frac{\cos{\left(6 x \right)}}{32} + \frac{5}{16}\right)d x}}}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=\frac{1}{32}$$$ och $$$f{\left(x \right)} = - 15 \cos{\left(2 x \right)} + 6 \cos{\left(4 x \right)} - \cos{\left(6 x \right)} + 10$$$:
$${\color{red}{\int{\left(- \frac{15 \cos{\left(2 x \right)}}{32} + \frac{3 \cos{\left(4 x \right)}}{16} - \frac{\cos{\left(6 x \right)}}{32} + \frac{5}{16}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(- 15 \cos{\left(2 x \right)} + 6 \cos{\left(4 x \right)} - \cos{\left(6 x \right)} + 10\right)d x}}{32}\right)}}$$
Integrera termvis:
$$\frac{{\color{red}{\int{\left(- 15 \cos{\left(2 x \right)} + 6 \cos{\left(4 x \right)} - \cos{\left(6 x \right)} + 10\right)d x}}}}{32} = \frac{{\color{red}{\left(\int{10 d x} - \int{15 \cos{\left(2 x \right)} d x} + \int{6 \cos{\left(4 x \right)} d x} - \int{\cos{\left(6 x \right)} d x}\right)}}}{32}$$
Tillämpa konstantregeln $$$\int c\, dx = c x$$$ med $$$c=10$$$:
$$- \frac{\int{15 \cos{\left(2 x \right)} d x}}{32} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{\int{\cos{\left(6 x \right)} d x}}{32} + \frac{{\color{red}{\int{10 d x}}}}{32} = - \frac{\int{15 \cos{\left(2 x \right)} d x}}{32} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{\int{\cos{\left(6 x \right)} d x}}{32} + \frac{{\color{red}{\left(10 x\right)}}}{32}$$
Låt $$$u=6 x$$$ vara.
Då $$$du=\left(6 x\right)^{\prime }dx = 6 dx$$$ (stegen kan ses »), och vi har att $$$dx = \frac{du}{6}$$$.
Alltså,
$$\frac{5 x}{16} - \frac{\int{15 \cos{\left(2 x \right)} d x}}{32} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{{\color{red}{\int{\cos{\left(6 x \right)} d x}}}}{32} = \frac{5 x}{16} - \frac{\int{15 \cos{\left(2 x \right)} d x}}{32} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{6} d u}}}}{32}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=\frac{1}{6}$$$ och $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$\frac{5 x}{16} - \frac{\int{15 \cos{\left(2 x \right)} d x}}{32} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{6} d u}}}}{32} = \frac{5 x}{16} - \frac{\int{15 \cos{\left(2 x \right)} d x}}{32} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{6}\right)}}}{32}$$
Integralen av cosinus är $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{5 x}{16} - \frac{\int{15 \cos{\left(2 x \right)} d x}}{32} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{192} = \frac{5 x}{16} - \frac{\int{15 \cos{\left(2 x \right)} d x}}{32} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{{\color{red}{\sin{\left(u \right)}}}}{192}$$
Kom ihåg att $$$u=6 x$$$:
$$\frac{5 x}{16} - \frac{\int{15 \cos{\left(2 x \right)} d x}}{32} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{\sin{\left({\color{red}{u}} \right)}}{192} = \frac{5 x}{16} - \frac{\int{15 \cos{\left(2 x \right)} d x}}{32} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{\sin{\left({\color{red}{\left(6 x\right)}} \right)}}{192}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=15$$$ och $$$f{\left(x \right)} = \cos{\left(2 x \right)}$$$:
$$\frac{5 x}{16} - \frac{\sin{\left(6 x \right)}}{192} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{{\color{red}{\int{15 \cos{\left(2 x \right)} d x}}}}{32} = \frac{5 x}{16} - \frac{\sin{\left(6 x \right)}}{192} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{{\color{red}{\left(15 \int{\cos{\left(2 x \right)} d x}\right)}}}{32}$$
Låt $$$u=2 x$$$ vara.
Då $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (stegen kan ses »), och vi har att $$$dx = \frac{du}{2}$$$.
Alltså,
$$\frac{5 x}{16} - \frac{\sin{\left(6 x \right)}}{192} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{15 {\color{red}{\int{\cos{\left(2 x \right)} d x}}}}{32} = \frac{5 x}{16} - \frac{\sin{\left(6 x \right)}}{192} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{15 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{32}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=\frac{1}{2}$$$ och $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$\frac{5 x}{16} - \frac{\sin{\left(6 x \right)}}{192} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{15 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{32} = \frac{5 x}{16} - \frac{\sin{\left(6 x \right)}}{192} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{15 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{32}$$
Integralen av cosinus är $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{5 x}{16} - \frac{\sin{\left(6 x \right)}}{192} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{15 {\color{red}{\int{\cos{\left(u \right)} d u}}}}{64} = \frac{5 x}{16} - \frac{\sin{\left(6 x \right)}}{192} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{15 {\color{red}{\sin{\left(u \right)}}}}{64}$$
Kom ihåg att $$$u=2 x$$$:
$$\frac{5 x}{16} - \frac{\sin{\left(6 x \right)}}{192} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{15 \sin{\left({\color{red}{u}} \right)}}{64} = \frac{5 x}{16} - \frac{\sin{\left(6 x \right)}}{192} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{15 \sin{\left({\color{red}{\left(2 x\right)}} \right)}}{64}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=6$$$ och $$$f{\left(x \right)} = \cos{\left(4 x \right)}$$$:
$$\frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192} + \frac{{\color{red}{\int{6 \cos{\left(4 x \right)} d x}}}}{32} = \frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192} + \frac{{\color{red}{\left(6 \int{\cos{\left(4 x \right)} d x}\right)}}}{32}$$
Låt $$$u=4 x$$$ vara.
Då $$$du=\left(4 x\right)^{\prime }dx = 4 dx$$$ (stegen kan ses »), och vi har att $$$dx = \frac{du}{4}$$$.
Integralen kan omskrivas som
$$\frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192} + \frac{3 {\color{red}{\int{\cos{\left(4 x \right)} d x}}}}{16} = \frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192} + \frac{3 {\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{16}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=\frac{1}{4}$$$ och $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$\frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192} + \frac{3 {\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{16} = \frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192} + \frac{3 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{16}$$
Integralen av cosinus är $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192} + \frac{3 {\color{red}{\int{\cos{\left(u \right)} d u}}}}{64} = \frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192} + \frac{3 {\color{red}{\sin{\left(u \right)}}}}{64}$$
Kom ihåg att $$$u=4 x$$$:
$$\frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192} + \frac{3 \sin{\left({\color{red}{u}} \right)}}{64} = \frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192} + \frac{3 \sin{\left({\color{red}{\left(4 x\right)}} \right)}}{64}$$
Alltså,
$$\int{\sin^{6}{\left(x \right)} d x} = \frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} + \frac{3 \sin{\left(4 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192}$$
Förenkla:
$$\int{\sin^{6}{\left(x \right)} d x} = \frac{60 x - 45 \sin{\left(2 x \right)} + 9 \sin{\left(4 x \right)} - \sin{\left(6 x \right)}}{192}$$
Lägg till integrationskonstanten:
$$\int{\sin^{6}{\left(x \right)} d x} = \frac{60 x - 45 \sin{\left(2 x \right)} + 9 \sin{\left(4 x \right)} - \sin{\left(6 x \right)}}{192}+C$$
Svar
$$$\int \sin^{6}{\left(x \right)}\, dx = \frac{60 x - 45 \sin{\left(2 x \right)} + 9 \sin{\left(4 x \right)} - \sin{\left(6 x \right)}}{192} + C$$$A