Integral de $$$\frac{1}{c^{2} y^{2}}$$$ con respecto a $$$y$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \frac{1}{c^{2} y^{2}}\, dy$$$.
Solución
Aplica la regla del factor constante $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ con $$$c=\frac{1}{c^{2}}$$$ y $$$f{\left(y \right)} = \frac{1}{y^{2}}$$$:
$${\color{red}{\int{\frac{1}{c^{2} y^{2}} d y}}} = {\color{red}{\frac{\int{\frac{1}{y^{2}} d y}}{c^{2}}}}$$
Aplica la regla de la potencia $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=-2$$$:
$$\frac{{\color{red}{\int{\frac{1}{y^{2}} d y}}}}{c^{2}}=\frac{{\color{red}{\int{y^{-2} d y}}}}{c^{2}}=\frac{{\color{red}{\frac{y^{-2 + 1}}{-2 + 1}}}}{c^{2}}=\frac{{\color{red}{\left(- y^{-1}\right)}}}{c^{2}}=\frac{{\color{red}{\left(- \frac{1}{y}\right)}}}{c^{2}}$$
Por lo tanto,
$$\int{\frac{1}{c^{2} y^{2}} d y} = - \frac{1}{c^{2} y}$$
Añade la constante de integración:
$$\int{\frac{1}{c^{2} y^{2}} d y} = - \frac{1}{c^{2} y}+C$$
Respuesta
$$$\int \frac{1}{c^{2} y^{2}}\, dy = - \frac{1}{c^{2} y} + C$$$A