Integral of $$$\frac{1}{c^{2} y^{2}}$$$ with respect to $$$y$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{c^{2} y^{2}}\, dy$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ with $$$c=\frac{1}{c^{2}}$$$ and $$$f{\left(y \right)} = \frac{1}{y^{2}}$$$:
$${\color{red}{\int{\frac{1}{c^{2} y^{2}} d y}}} = {\color{red}{\frac{\int{\frac{1}{y^{2}} d y}}{c^{2}}}}$$
Apply the power rule $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-2$$$:
$$\frac{{\color{red}{\int{\frac{1}{y^{2}} d y}}}}{c^{2}}=\frac{{\color{red}{\int{y^{-2} d y}}}}{c^{2}}=\frac{{\color{red}{\frac{y^{-2 + 1}}{-2 + 1}}}}{c^{2}}=\frac{{\color{red}{\left(- y^{-1}\right)}}}{c^{2}}=\frac{{\color{red}{\left(- \frac{1}{y}\right)}}}{c^{2}}$$
Therefore,
$$\int{\frac{1}{c^{2} y^{2}} d y} = - \frac{1}{c^{2} y}$$
Add the constant of integration:
$$\int{\frac{1}{c^{2} y^{2}} d y} = - \frac{1}{c^{2} y}+C$$
Answer
$$$\int \frac{1}{c^{2} y^{2}}\, dy = - \frac{1}{c^{2} y} + C$$$A