Integral de $$$- 2 x + x e^{3}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \left(- 2 x + x e^{3}\right)\, dx$$$.
Solución
Integra término a término:
$${\color{red}{\int{\left(- 2 x + x e^{3}\right)d x}}} = {\color{red}{\left(- \int{2 x d x} + \int{x e^{3} d x}\right)}}$$
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=2$$$ y $$$f{\left(x \right)} = x$$$:
$$\int{x e^{3} d x} - {\color{red}{\int{2 x d x}}} = \int{x e^{3} d x} - {\color{red}{\left(2 \int{x d x}\right)}}$$
Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:
$$\int{x e^{3} d x} - 2 {\color{red}{\int{x d x}}}=\int{x e^{3} d x} - 2 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\int{x e^{3} d x} - 2 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=e^{3}$$$ y $$$f{\left(x \right)} = x$$$:
$$- x^{2} + {\color{red}{\int{x e^{3} d x}}} = - x^{2} + {\color{red}{e^{3} \int{x d x}}}$$
Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:
$$- x^{2} + e^{3} {\color{red}{\int{x d x}}}=- x^{2} + e^{3} {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- x^{2} + e^{3} {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Por lo tanto,
$$\int{\left(- 2 x + x e^{3}\right)d x} = - x^{2} + \frac{x^{2} e^{3}}{2}$$
Simplificar:
$$\int{\left(- 2 x + x e^{3}\right)d x} = \frac{x^{2} \left(-2 + e^{3}\right)}{2}$$
Añade la constante de integración:
$$\int{\left(- 2 x + x e^{3}\right)d x} = \frac{x^{2} \left(-2 + e^{3}\right)}{2}+C$$
Respuesta
$$$\int \left(- 2 x + x e^{3}\right)\, dx = \frac{x^{2} \left(-2 + e^{3}\right)}{2} + C$$$A