Integral of $$$- 2 x + x e^{3}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(- 2 x + x e^{3}\right)\, dx$$$.
Solution
Integrate term by term:
$${\color{red}{\int{\left(- 2 x + x e^{3}\right)d x}}} = {\color{red}{\left(- \int{2 x d x} + \int{x e^{3} d x}\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=2$$$ and $$$f{\left(x \right)} = x$$$:
$$\int{x e^{3} d x} - {\color{red}{\int{2 x d x}}} = \int{x e^{3} d x} - {\color{red}{\left(2 \int{x d x}\right)}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:
$$\int{x e^{3} d x} - 2 {\color{red}{\int{x d x}}}=\int{x e^{3} d x} - 2 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\int{x e^{3} d x} - 2 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=e^{3}$$$ and $$$f{\left(x \right)} = x$$$:
$$- x^{2} + {\color{red}{\int{x e^{3} d x}}} = - x^{2} + {\color{red}{e^{3} \int{x d x}}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:
$$- x^{2} + e^{3} {\color{red}{\int{x d x}}}=- x^{2} + e^{3} {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- x^{2} + e^{3} {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Therefore,
$$\int{\left(- 2 x + x e^{3}\right)d x} = - x^{2} + \frac{x^{2} e^{3}}{2}$$
Simplify:
$$\int{\left(- 2 x + x e^{3}\right)d x} = \frac{x^{2} \left(-2 + e^{3}\right)}{2}$$
Add the constant of integration:
$$\int{\left(- 2 x + x e^{3}\right)d x} = \frac{x^{2} \left(-2 + e^{3}\right)}{2}+C$$
Answer
$$$\int \left(- 2 x + x e^{3}\right)\, dx = \frac{x^{2} \left(-2 + e^{3}\right)}{2} + C$$$A