Integral de $$$e^{2} \ln\left(x\right)$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int e^{2} \ln\left(x\right)\, dx$$$.
Solución
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=e^{2}$$$ y $$$f{\left(x \right)} = \ln{\left(x \right)}$$$:
$${\color{red}{\int{e^{2} \ln{\left(x \right)} d x}}} = {\color{red}{e^{2} \int{\ln{\left(x \right)} d x}}}$$
Para la integral $$$\int{\ln{\left(x \right)} d x}$$$, utiliza la integración por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Sean $$$\operatorname{u}=\ln{\left(x \right)}$$$ y $$$\operatorname{dv}=dx$$$.
Entonces $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (los pasos pueden verse ») y $$$\operatorname{v}=\int{1 d x}=x$$$ (los pasos pueden verse »).
La integral puede reescribirse como
$$e^{2} {\color{red}{\int{\ln{\left(x \right)} d x}}}=e^{2} {\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}=e^{2} {\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}$$
Aplica la regla de la constante $$$\int c\, dx = c x$$$ con $$$c=1$$$:
$$e^{2} \left(x \ln{\left(x \right)} - {\color{red}{\int{1 d x}}}\right) = e^{2} \left(x \ln{\left(x \right)} - {\color{red}{x}}\right)$$
Por lo tanto,
$$\int{e^{2} \ln{\left(x \right)} d x} = \left(x \ln{\left(x \right)} - x\right) e^{2}$$
Simplificar:
$$\int{e^{2} \ln{\left(x \right)} d x} = x \left(\ln{\left(x \right)} - 1\right) e^{2}$$
Añade la constante de integración:
$$\int{e^{2} \ln{\left(x \right)} d x} = x \left(\ln{\left(x \right)} - 1\right) e^{2}+C$$
Respuesta
$$$\int e^{2} \ln\left(x\right)\, dx = x \left(\ln\left(x\right) - 1\right) e^{2} + C$$$A