$$$e^{2} \ln\left(x\right)$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$e^{2} \ln\left(x\right)$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int e^{2} \ln\left(x\right)\, dx$$$.

Çözüm

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=e^{2}$$$ ve $$$f{\left(x \right)} = \ln{\left(x \right)}$$$ ile uygula:

$${\color{red}{\int{e^{2} \ln{\left(x \right)} d x}}} = {\color{red}{e^{2} \int{\ln{\left(x \right)} d x}}}$$

$$$\int{\ln{\left(x \right)} d x}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.

$$$\operatorname{u}=\ln{\left(x \right)}$$$ ve $$$\operatorname{dv}=dx$$$ olsun.

O halde $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{1 d x}=x$$$ (adımlar için bkz. »).

İntegral şu şekilde yeniden yazılabilir:

$$e^{2} {\color{red}{\int{\ln{\left(x \right)} d x}}}=e^{2} {\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}=e^{2} {\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}$$

$$$c=1$$$ kullanarak $$$\int c\, dx = c x$$$ sabit kuralını uygula:

$$e^{2} \left(x \ln{\left(x \right)} - {\color{red}{\int{1 d x}}}\right) = e^{2} \left(x \ln{\left(x \right)} - {\color{red}{x}}\right)$$

Dolayısıyla,

$$\int{e^{2} \ln{\left(x \right)} d x} = \left(x \ln{\left(x \right)} - x\right) e^{2}$$

Sadeleştirin:

$$\int{e^{2} \ln{\left(x \right)} d x} = x \left(\ln{\left(x \right)} - 1\right) e^{2}$$

İntegrasyon sabitini ekleyin:

$$\int{e^{2} \ln{\left(x \right)} d x} = x \left(\ln{\left(x \right)} - 1\right) e^{2}+C$$

Cevap

$$$\int e^{2} \ln\left(x\right)\, dx = x \left(\ln\left(x\right) - 1\right) e^{2} + C$$$A


Please try a new game Rotatly