Integral de $$$\cos^{2}{\left(y \right)}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \cos^{2}{\left(y \right)}\, dy$$$.
Solución
Aplica la fórmula de reducción de potencia $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ con $$$\alpha=y$$$:
$${\color{red}{\int{\cos^{2}{\left(y \right)} d y}}} = {\color{red}{\int{\left(\frac{\cos{\left(2 y \right)}}{2} + \frac{1}{2}\right)d y}}}$$
Aplica la regla del factor constante $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(y \right)} = \cos{\left(2 y \right)} + 1$$$:
$${\color{red}{\int{\left(\frac{\cos{\left(2 y \right)}}{2} + \frac{1}{2}\right)d y}}} = {\color{red}{\left(\frac{\int{\left(\cos{\left(2 y \right)} + 1\right)d y}}{2}\right)}}$$
Integra término a término:
$$\frac{{\color{red}{\int{\left(\cos{\left(2 y \right)} + 1\right)d y}}}}{2} = \frac{{\color{red}{\left(\int{1 d y} + \int{\cos{\left(2 y \right)} d y}\right)}}}{2}$$
Aplica la regla de la constante $$$\int c\, dy = c y$$$ con $$$c=1$$$:
$$\frac{\int{\cos{\left(2 y \right)} d y}}{2} + \frac{{\color{red}{\int{1 d y}}}}{2} = \frac{\int{\cos{\left(2 y \right)} d y}}{2} + \frac{{\color{red}{y}}}{2}$$
Sea $$$u=2 y$$$.
Entonces $$$du=\left(2 y\right)^{\prime }dy = 2 dy$$$ (los pasos pueden verse »), y obtenemos que $$$dy = \frac{du}{2}$$$.
La integral puede reescribirse como
$$\frac{y}{2} + \frac{{\color{red}{\int{\cos{\left(2 y \right)} d y}}}}{2} = \frac{y}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2}$$
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$\frac{y}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2} = \frac{y}{2} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{2}$$
La integral del coseno es $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{y}{2} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{4} = \frac{y}{2} + \frac{{\color{red}{\sin{\left(u \right)}}}}{4}$$
Recordemos que $$$u=2 y$$$:
$$\frac{y}{2} + \frac{\sin{\left({\color{red}{u}} \right)}}{4} = \frac{y}{2} + \frac{\sin{\left({\color{red}{\left(2 y\right)}} \right)}}{4}$$
Por lo tanto,
$$\int{\cos^{2}{\left(y \right)} d y} = \frac{y}{2} + \frac{\sin{\left(2 y \right)}}{4}$$
Añade la constante de integración:
$$\int{\cos^{2}{\left(y \right)} d y} = \frac{y}{2} + \frac{\sin{\left(2 y \right)}}{4}+C$$
Respuesta
$$$\int \cos^{2}{\left(y \right)}\, dy = \left(\frac{y}{2} + \frac{\sin{\left(2 y \right)}}{4}\right) + C$$$A