Integral de $$$\cos{\left(4 y \right)}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \cos{\left(4 y \right)}\, dy$$$.
Solución
Sea $$$u=4 y$$$.
Entonces $$$du=\left(4 y\right)^{\prime }dy = 4 dy$$$ (los pasos pueden verse »), y obtenemos que $$$dy = \frac{du}{4}$$$.
Por lo tanto,
$${\color{red}{\int{\cos{\left(4 y \right)} d y}}} = {\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}$$
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{4}$$$ y $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}} = {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}$$
La integral del coseno es $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{4} = \frac{{\color{red}{\sin{\left(u \right)}}}}{4}$$
Recordemos que $$$u=4 y$$$:
$$\frac{\sin{\left({\color{red}{u}} \right)}}{4} = \frac{\sin{\left({\color{red}{\left(4 y\right)}} \right)}}{4}$$
Por lo tanto,
$$\int{\cos{\left(4 y \right)} d y} = \frac{\sin{\left(4 y \right)}}{4}$$
Añade la constante de integración:
$$\int{\cos{\left(4 y \right)} d y} = \frac{\sin{\left(4 y \right)}}{4}+C$$
Respuesta
$$$\int \cos{\left(4 y \right)}\, dy = \frac{\sin{\left(4 y \right)}}{4} + C$$$A