Integral de $$$\frac{1}{4 t^{8}}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \frac{1}{4 t^{8}}\, dt$$$.
Solución
Aplica la regla del factor constante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ con $$$c=\frac{1}{4}$$$ y $$$f{\left(t \right)} = \frac{1}{t^{8}}$$$:
$${\color{red}{\int{\frac{1}{4 t^{8}} d t}}} = {\color{red}{\left(\frac{\int{\frac{1}{t^{8}} d t}}{4}\right)}}$$
Aplica la regla de la potencia $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=-8$$$:
$$\frac{{\color{red}{\int{\frac{1}{t^{8}} d t}}}}{4}=\frac{{\color{red}{\int{t^{-8} d t}}}}{4}=\frac{{\color{red}{\frac{t^{-8 + 1}}{-8 + 1}}}}{4}=\frac{{\color{red}{\left(- \frac{t^{-7}}{7}\right)}}}{4}=\frac{{\color{red}{\left(- \frac{1}{7 t^{7}}\right)}}}{4}$$
Por lo tanto,
$$\int{\frac{1}{4 t^{8}} d t} = - \frac{1}{28 t^{7}}$$
Añade la constante de integración:
$$\int{\frac{1}{4 t^{8}} d t} = - \frac{1}{28 t^{7}}+C$$
Respuesta
$$$\int \frac{1}{4 t^{8}}\, dt = - \frac{1}{28 t^{7}} + C$$$A