Integral of $$$\frac{1}{4 t^{8}}$$$

The calculator will find the integral/antiderivative of $$$\frac{1}{4 t^{8}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{1}{4 t^{8}}\, dt$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ with $$$c=\frac{1}{4}$$$ and $$$f{\left(t \right)} = \frac{1}{t^{8}}$$$:

$${\color{red}{\int{\frac{1}{4 t^{8}} d t}}} = {\color{red}{\left(\frac{\int{\frac{1}{t^{8}} d t}}{4}\right)}}$$

Apply the power rule $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-8$$$:

$$\frac{{\color{red}{\int{\frac{1}{t^{8}} d t}}}}{4}=\frac{{\color{red}{\int{t^{-8} d t}}}}{4}=\frac{{\color{red}{\frac{t^{-8 + 1}}{-8 + 1}}}}{4}=\frac{{\color{red}{\left(- \frac{t^{-7}}{7}\right)}}}{4}=\frac{{\color{red}{\left(- \frac{1}{7 t^{7}}\right)}}}{4}$$

Therefore,

$$\int{\frac{1}{4 t^{8}} d t} = - \frac{1}{28 t^{7}}$$

Add the constant of integration:

$$\int{\frac{1}{4 t^{8}} d t} = - \frac{1}{28 t^{7}}+C$$

Answer

$$$\int \frac{1}{4 t^{8}}\, dt = - \frac{1}{28 t^{7}} + C$$$A


Please try a new game Rotatly