Integrale di $$$\frac{1}{4 t^{8}}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \frac{1}{4 t^{8}}\, dt$$$.
Soluzione
Applica la regola del fattore costante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ con $$$c=\frac{1}{4}$$$ e $$$f{\left(t \right)} = \frac{1}{t^{8}}$$$:
$${\color{red}{\int{\frac{1}{4 t^{8}} d t}}} = {\color{red}{\left(\frac{\int{\frac{1}{t^{8}} d t}}{4}\right)}}$$
Applica la regola della potenza $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=-8$$$:
$$\frac{{\color{red}{\int{\frac{1}{t^{8}} d t}}}}{4}=\frac{{\color{red}{\int{t^{-8} d t}}}}{4}=\frac{{\color{red}{\frac{t^{-8 + 1}}{-8 + 1}}}}{4}=\frac{{\color{red}{\left(- \frac{t^{-7}}{7}\right)}}}{4}=\frac{{\color{red}{\left(- \frac{1}{7 t^{7}}\right)}}}{4}$$
Pertanto,
$$\int{\frac{1}{4 t^{8}} d t} = - \frac{1}{28 t^{7}}$$
Aggiungi la costante di integrazione:
$$\int{\frac{1}{4 t^{8}} d t} = - \frac{1}{28 t^{7}}+C$$
Risposta
$$$\int \frac{1}{4 t^{8}}\, dt = - \frac{1}{28 t^{7}} + C$$$A