# Calculadora de polinomios

## Calcula polinomios paso a paso

La calculadora encontrará (con los pasos que se muestran) la suma, la diferencia, el producto y el resultado de la división de dos polinomios (cuadrático, binomial, trinomio, etc.). También calculará las raíces de los polinomios y los factorizará. Se aceptan tanto polinomios univariantes como multivariantes.

First polynomial:

Second polynomial:

The second polynomial is needed for addition, subtraction, multiplication, division; but not for root finding, factoring.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

### Solution

Your input: find the sum, difference, product of two polynomials, quotient and remainder from dividing one by another; factor them and find roots.

### Addition of polynomials

To add polynomials, combine and add the coefficients near the like terms:

$\left(\color{DarkMagenta}{2 x^{4}}\color{Chocolate}{- 3 x^{3}}\color{DarkCyan}{- 15 x^{2}}+\color{Brown}{32 x}\color{SaddleBrown}{-12}\right)+\left(\color{DarkCyan}{x^{2}}\color{Brown}{- 4 x}\color{SaddleBrown}{-12}\right)=$

$=\color{DarkMagenta}{2 x^{4}}\color{Chocolate}{- 3 x^{3}}+\color{DarkCyan}{\left(\left(-15\right)+1\right) x^{2}}+\color{Brown}{\left(32+\left(-4\right)\right) x}+\color{SaddleBrown}{\left(\left(-12\right)+\left(-12\right)\right) }=$

$=2 x^{4} - 3 x^{3} - 14 x^{2} + 28 x - 24$

### Subtraction of polynomials

To subtract polynomials, combine and subtract the coefficients near the like terms:

$\left(\color{DarkMagenta}{2 x^{4}}\color{Chocolate}{- 3 x^{3}}\color{DarkCyan}{- 15 x^{2}}+\color{Brown}{32 x}\color{SaddleBrown}{-12}\right)-\left(\color{DarkCyan}{x^{2}}\color{Brown}{- 4 x}\color{SaddleBrown}{-12}\right)=$

$=\color{DarkMagenta}{2 x^{4}}\color{Chocolate}{- 3 x^{3}}+\color{DarkCyan}{\left(\left(-15\right)-1\right) x^{2}}+\color{Brown}{\left(32-\left(-4\right)\right) x}+\color{SaddleBrown}{\left(\left(-12\right)-\left(-12\right)\right) }=$

$=2 x^{4} - 3 x^{3} - 16 x^{2} + 36 x$

### Multiplication of polynomials

To multiply polynomials, multiple each term of the first polynomial with every term of the second polynomial. Then simplify the products and add them. Finally, simplify further if possible.

So, perform the first step:

$\left(\color{SaddleBrown}{2 x^{4}}\color{Brown}{- 3 x^{3}}\color{DarkCyan}{- 15 x^{2}}+\color{Chocolate}{32 x}\color{DarkMagenta}{-12}\right) \cdot \left(\color{Purple}{x^{2}}\color{Peru}{- 4 x}\color{Violet}{-12}\right)=$

$=\left(\color{SaddleBrown}{2 x^{4}}\right)\cdot \left(\color{Purple}{x^{2}}\right)+\left(\color{SaddleBrown}{2 x^{4}}\right)\cdot \left(\color{Peru}{- 4 x}\right)+\left(\color{SaddleBrown}{2 x^{4}}\right)\cdot \left(\color{Violet}{-12}\right)+$

$+\left(\color{Brown}{- 3 x^{3}}\right)\cdot \left(\color{Purple}{x^{2}}\right)+\left(\color{Brown}{- 3 x^{3}}\right)\cdot \left(\color{Peru}{- 4 x}\right)+\left(\color{Brown}{- 3 x^{3}}\right)\cdot \left(\color{Violet}{-12}\right)+$

$+\left(\color{DarkCyan}{- 15 x^{2}}\right)\cdot \left(\color{Purple}{x^{2}}\right)+\left(\color{DarkCyan}{- 15 x^{2}}\right)\cdot \left(\color{Peru}{- 4 x}\right)+\left(\color{DarkCyan}{- 15 x^{2}}\right)\cdot \left(\color{Violet}{-12}\right)+$

$+\left(\color{Chocolate}{32 x}\right)\cdot \left(\color{Purple}{x^{2}}\right)+\left(\color{Chocolate}{32 x}\right)\cdot \left(\color{Peru}{- 4 x}\right)+\left(\color{Chocolate}{32 x}\right)\cdot \left(\color{Violet}{-12}\right)+$

$+\left(\color{DarkMagenta}{-12}\right)\cdot \left(\color{Purple}{x^{2}}\right)+\left(\color{DarkMagenta}{-12}\right)\cdot \left(\color{Peru}{- 4 x}\right)+\left(\color{DarkMagenta}{-12}\right)\cdot \left(\color{Violet}{-12}\right)=$

Simplify the products:

$=2 x^{6}- 8 x^{5}- 24 x^{4}+$

$- 3 x^{5}+12 x^{4}+36 x^{3}+$

$- 15 x^{4}+60 x^{3}+180 x^{2}+$

$+32 x^{3}- 128 x^{2}- 384 x+$

$- 12 x^{2}+48 x+144=$

Simplify further (same way as adding/subtracting polynomials):

$=2 x^{6} - 11 x^{5} - 27 x^{4} + 128 x^{3} + 40 x^{2} - 336 x + 144$

### Division of polynomials

Perform polynomial long division (use the polynomial long division calculator to see the steps).

$\frac{2 x^{4} - 3 x^{3} - 15 x^{2} + 32 x - 12}{x^{2} - 4 x - 12}=2 x^{2} + 5 x + 29+\frac{208 x + 336}{x^{2} - 4 x - 12}$

### Factoring $2 x^{4} - 3 x^{3} - 15 x^{2} + 32 x - 12$

Since all coefficients are integers, apply the rational zeros theorem.

The trailing coefficient (coefficient of the constant term) is $-12$.

Find its factors (with plus and minus): $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$. These are the possible values for p.

The leading coefficient (coefficient of the term with the highest degree) is $2$.

Find its factors (with plus and minus): $\pm 1, \pm 2$. These are the possible values for q.

Find all possible values of p/q: $\pm \frac{1}{1}, \pm \frac{1}{2}, \pm \frac{2}{1}, \pm \frac{2}{2}, \pm \frac{3}{1}, \pm \frac{3}{2}, \pm \frac{4}{1}, \pm \frac{4}{2}, \pm \frac{6}{1}, \pm \frac{6}{2}, \pm \frac{12}{1}, \pm \frac{12}{2}$.

Simplify and remove duplicates (if any): $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12, \pm \frac{1}{2}, \pm \frac{3}{2}$.

If a is a root of the polynomial P(x), then the remainder from the division of P(x) by x-a should equal 0.

• Check $1$: divide $2 x^{4} - 3 x^{3} - 15 x^{2} + 32 x - 12$ by $x - 1$.

The quotient is $2 x^{3} - x^{2} - 16 x + 16$, and the remainder is $4$ (use the synthetic division calculator to see the steps).

• Check $-1$: divide $2 x^{4} - 3 x^{3} - 15 x^{2} + 32 x - 12$ by $x + 1$.

The quotient is $2 x^{3} - 5 x^{2} - 10 x + 42$, and the remainder is $-54$ (use the synthetic division calculator to see the steps).

• Check $2$: divide $2 x^{4} - 3 x^{3} - 15 x^{2} + 32 x - 12$ by $x - 2$.

The quotient is $2 x^{3} + x^{2} - 13 x + 6$, and the remainder is $0$ (use the synthetic division calculator to see the steps).

Since the remainder is 0, then $2$ is the root, and $x - 2$ is the factor: $2 x^{4} - 3 x^{3} - 15 x^{2} + 32 x - 12 = \left(x - 2\right) \left(2 x^{3} + x^{2} - 13 x + 6\right)$

$${\color{red}{\left(2 x^{4} - 3 x^{3} - 15 x^{2} + 32 x - 12\right)}} = {\color{red}{\left(x - 2\right) \left(2 x^{3} + x^{2} - 13 x + 6\right)}}$$

Since all coefficients are integers, apply the rational zeros theorem.

The trailing coefficient (coefficient of the constant term) is $6$.

Find its factors (with plus and minus): $\pm 1, \pm 2, \pm 3, \pm 6$. These are the possible values for p.

The leading coefficient (coefficient of the term with the highest degree) is $2$.

Find its factors (with plus and minus): $\pm 1, \pm 2$. These are the possible values for q.

Find all possible values of p/q: $\pm \frac{1}{1}, \pm \frac{1}{2}, \pm \frac{2}{1}, \pm \frac{2}{2}, \pm \frac{3}{1}, \pm \frac{3}{2}, \pm \frac{6}{1}, \pm \frac{6}{2}$.

Simplify and remove duplicates (if any): $\pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{2}, \pm \frac{3}{2}$.

If a is a root of the polynomial P(x), then the remainder from the division of P(x) by x-a should equal 0.

• Check $1$: divide $2 x^{3} + x^{2} - 13 x + 6$ by $x - 1$.

The quotient is $2 x^{2} + 3 x - 10$, and the remainder is $-4$ (use the synthetic division calculator to see the steps).

• Check $-1$: divide $2 x^{3} + x^{2} - 13 x + 6$ by $x + 1$.

The quotient is $2 x^{2} - x - 12$, and the remainder is $18$ (use the synthetic division calculator to see the steps).

• Check $2$: divide $2 x^{3} + x^{2} - 13 x + 6$ by $x - 2$.

The quotient is $2 x^{2} + 5 x - 3$, and the remainder is $0$ (use the synthetic division calculator to see the steps).

Since the remainder is 0, then $2$ is the root, and $x - 2$ is the factor: $2 x^{3} + x^{2} - 13 x + 6 = \left(x - 2\right) \left(2 x^{2} + 5 x - 3\right)$

$$\left(x - 2\right) {\color{red}{\left(2 x^{3} + x^{2} - 13 x + 6\right)}} = \left(x - 2\right) {\color{red}{\left(x - 2\right) \left(2 x^{2} + 5 x - 3\right)}}$$

To factor the quadratic function $2 x^{2} + 5 x - 3$, we should solve the corresponding quadratic equation $2 x^{2} + 5 x - 3=0$.

Indeed, if $x_1$ and $x_2$ are the roots of the quadratic equation $ax^2+bx+c=0$, then $ax^2+bx+c=a(x-x_1)(x-x_2)$.

Solve the quadratic equation $2 x^{2} + 5 x - 3=0$.

The roots are $x_{1} = \frac{1}{2}$, $x_{2} = -3$ (use the quadratic equation calculator to see the steps).

Therefore, $2 x^{2} + 5 x - 3 = 2 \left(x - \frac{1}{2}\right) \left(x + 3\right)$.

$$\left(x - 2\right)^{2} {\color{red}{\left(2 x^{2} + 5 x - 3\right)}} = \left(x - 2\right)^{2} {\color{red}{\left(2 \left(x - \frac{1}{2}\right) \left(x + 3\right)\right)}}$$

Simplify: $2 \left(x - 2\right)^{2} \left(x - \frac{1}{2}\right) \left(x + 3\right)=\left(x - 2\right)^{2} \left(x + 3\right) \left(2 x - 1\right)$.

$2 x^{4} - 3 x^{3} - 15 x^{2} + 32 x - 12=\left(x - 2\right)^{2} \left(x + 3\right) \left(2 x - 1\right)$.

### Roots of the equation $2 x^{4} - 3 x^{3} - 15 x^{2} + 32 x - 12=0$

We have already found the factorization of $2 x^{4} - 3 x^{3} - 15 x^{2} + 32 x - 12=\left(x - 2\right)^{2} \left(x + 3\right) \left(2 x - 1\right)$ (see above).

Thus, we can write that $2 x^{4} - 3 x^{3} - 15 x^{2} + 32 x - 12=0$ is equivalent to the $\left(x - 2\right)^{2} \left(x + 3\right) \left(2 x - 1\right)=0$.

It is known that the product is zero when at least one factor is zero, so we just need to set the factors equal to zero and solve the corresponding equations (some equations have already been solved, some can't be solved by hand).

• $\left(x - 2\right)^{2}=0$: the root is $x=2$ (multiplicity: $2$).
• $2 x - 1=0$: the root is $x=\frac{1}{2}$.
• $x + 3=0$: the root is $x=-3$.

Therefore, the roots of the initial equation are: $x_1=-3$; $x_2=\frac{1}{2}$; $x_3=2$ (multiplicity: $2$).

### Factoring $x^{2} - 4 x - 12$

To factor the quadratic function $x^{2} - 4 x - 12$, we should solve the corresponding quadratic equation $x^{2} - 4 x - 12=0$.

Indeed, if $x_1$ and $x_2$ are the roots of the quadratic equation $ax^2+bx+c=0$, then $ax^2+bx+c=a(x-x_1)(x-x_2)$.

Solve the quadratic equation $x^{2} - 4 x - 12=0$.

The roots are $x_{1} = 6$, $x_{2} = -2$ (use the quadratic equation calculator to see the steps).

Therefore, $x^{2} - 4 x - 12 = \left(x - 6\right) \left(x + 2\right)$.

$${\color{red}{\left(x^{2} - 4 x - 12\right)}} = {\color{red}{\left(x - 6\right) \left(x + 2\right)}}$$

$x^{2} - 4 x - 12=\left(x - 6\right) \left(x + 2\right)$.

### Roots of the equation $x^{2} - 4 x - 12=0$

We have already found the factorization of $x^{2} - 4 x - 12=\left(x - 6\right) \left(x + 2\right)$ (see above).

Thus, we can write that $x^{2} - 4 x - 12=0$ is equivalent to the $\left(x - 6\right) \left(x + 2\right)=0$.

It is known that the product is zero when at least one factor is zero, so we just need to set the factors equal to zero and solve the corresponding equations (some equations have already been solved, some can't be solved by hand).

• $x - 6=0$: the root is $x=6$.
• $x + 2=0$: the root is $x=-2$.

Therefore, the roots of the initial equation are: $x_1=6$; $x_2=-2$.

Answer:

$\left(2 x^{4} - 3 x^{3} - 15 x^{2} + 32 x - 12\right)+\left(x^{2} - 4 x - 12\right)=2 x^{4} - 3 x^{3} - 14 x^{2} + 28 x - 24$.

$\left(2 x^{4} - 3 x^{3} - 15 x^{2} + 32 x - 12\right)-\left(x^{2} - 4 x - 12\right)=2 x^{4} - 3 x^{3} - 16 x^{2} + 36 x$.

$\left(2 x^{4} - 3 x^{3} - 15 x^{2} + 32 x - 12\right)\cdot \left(x^{2} - 4 x - 12\right)=2 x^{6} - 11 x^{5} - 27 x^{4} + 128 x^{3} + 40 x^{2} - 336 x + 144$.

$\frac{2 x^{4} - 3 x^{3} - 15 x^{2} + 32 x - 12}{x^{2} - 4 x - 12}=2 x^{2} + 5 x + 29+\frac{208 x + 336}{x^{2} - 4 x - 12}$.

$2 x^{4} - 3 x^{3} - 15 x^{2} + 32 x - 12=\left(x - 2\right)^{2} \left(x + 3\right) \left(2 x - 1\right)$.

Roots of the equation $2 x^{4} - 3 x^{3} - 15 x^{2} + 32 x - 12=0$:

• $-3$, multiplicity $1$.
• $\frac{1}{2}$, multiplicity $1$.
• $2$, multiplicity $2$.

$x^{2} - 4 x - 12=\left(x - 6\right) \left(x + 2\right)$.

Roots of the equation $x^{2} - 4 x - 12=0$:

• $6$, multiplicity $1$.
• $-2$, multiplicity $1$.