# Cube of Sum and Difference

## Related Calculator: Polynomial Calculator

Cube of sum and difference:

huge color(purple)((a+-b)^3=a^3+-3a^2b+3ab^2+-b^3)

Let's see how to derive it.

Recall, that exponent is just repeating multiplication.

Thus, we can write that (a+b)^3=(a+b)(a+b)^2.

From square of sum/difference note, we know, that (a+b)^2=a^2+2ab+b^2.

Thus, (a+b)^3=(a+b)(a^2+2ab+b^2).

Finally, just multiply polynomials: (a+b)(a^2+2ab+b^2)=a*a^2+a*2ab+a*b^2+b*a^2+b*2ab+b*b^2=

=a^3+3a^2b+3ab^2+b^3.

Similarly, it can be shown, that (a-b)^3=a^3-3a^2b+3ab^2-b^3.

Or, more shortly: (a+-b)^3=a^3+-3a^2b+3ab^2+-b^2.

Example 1. Multiply (2x+y)^3.

Here a=2x and b=y.

Just use above formula: (2x+y)^3=(2x)^3+3*(2x)^2*(y)+3*(2x)*(y)^2+(y)^3=8x^3+12x^2y+6xy^2+y^3.

Let's see how to handle minus sign.

Example 2. Multiply (3/4ab-2cd)^3.

Here a=3/4ab and b=2cd.

Now, use formula for difference: (3/4ab-2cd)^3=(3/4ab)^3-3*(3/4ab)^2*(2cd)+3*(3/4ab)*(2cd)^2-(2cd)^3=

=27/64a^3b^3-27/8a^2b^2cd+9abc^2d^2-8c^3d^3.

Finally, let's do a slightly harder example.

Example 3. Multiply the following: (-xyz-2x^2)^3.

Till now, we didn't see two minus signs, but this case can be handled easily.

There are two options:

• a=-xyz and b=-2x^2; apply sum formula.
• a=-xyz and b=2x^2; apply difference formula.

I choose second option: (-xyz-2x^2)^3=(-xyz)^3-3*(-xyz)^2*(2x^2)+3*(-xyz)*(2x^2)^2-(2x^2)^3=

=-x^3y^3z^3-6x^4y^2z^2-12x^5yz-8x^6.

From last example we see, that color(purple)((-a-b)^3=-(a+b)^3).

Now, it is time to exercise.

Exercise 1. Multiply (4z+3y)^3.

Answer: 64z^3+144z^2y+108zy^2+27y^3.

Exercise 2. Multiply (-1/3x^3y^2+2x)^3.

Answer: -1/27x^9y^6+2/3x^7y^4-4x^5y^2+8x^3.

Hint: either swap summands ((-1/3x^3y^2+2x)^3=(2x-1/3x^3y^2)^3: commutative property of addition) or proceed as always.

Exercise 3. Multiply the following: (-2x-1)^3.

Answer: -8x^3-12x^2-6x-1.