# Curl Calculator

The calculator will find the curl of the given vector field, with steps shown.

Related calculators: Partial Derivative Calculator, Cross Product Calculator, Matrix Determinant Calculator

(
,
,
)
(
,
,
)
Leave empty, if you don't need the curl at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Calculate $\operatorname{curl}{\left(\cos{\left(x y \right)},e^{x y z},\sin{\left(x y \right)} \right)}$.

## Solution

By definition, $\operatorname{curl}{\left(\cos{\left(x y \right)},e^{x y z},\sin{\left(x y \right)} \right)} = \nabla\times \left(\cos{\left(x y \right)}, e^{x y z}, \sin{\left(x y \right)}\right)$, or, equivalently, $\operatorname{curl}{\left(\cos{\left(x y \right)},e^{x y z},\sin{\left(x y \right)} \right)} = \left|\begin{array}{ccc}\mathbf{\vec{i}} & \mathbf{\vec{j}} & \mathbf{\vec{k}}\\\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\\cos{\left(x y \right)} & e^{x y z} & \sin{\left(x y \right)}\end{array}\right|.$

Thus, $\operatorname{curl}{\left(\cos{\left(x y \right)},e^{x y z},\sin{\left(x y \right)} \right)} = \left(\frac{\partial}{\partial y} \left(\sin{\left(x y \right)}\right) - \frac{\partial}{\partial z} \left(e^{x y z}\right), \frac{\partial}{\partial z} \left(\cos{\left(x y \right)}\right) - \frac{\partial}{\partial x} \left(\sin{\left(x y \right)}\right), \frac{\partial}{\partial x} \left(e^{x y z}\right) - \frac{\partial}{\partial y} \left(\cos{\left(x y \right)}\right)\right).$

Find the partial derivatives:

$\frac{\partial}{\partial y} \left(\sin{\left(x y \right)}\right) = x \cos{\left(x y \right)}$ (for steps, see derivative calculator).

$\frac{\partial}{\partial z} \left(e^{x y z}\right) = x y e^{x y z}$ (for steps, see derivative calculator).

$\frac{\partial}{\partial z} \left(\cos{\left(x y \right)}\right) = 0$ (for steps, see derivative calculator).

$\frac{\partial}{\partial x} \left(\sin{\left(x y \right)}\right) = y \cos{\left(x y \right)}$ (for steps, see derivative calculator).

$\frac{\partial}{\partial x} \left(e^{x y z}\right) = y z e^{x y z}$ (for steps, see derivative calculator).

$\frac{\partial}{\partial y} \left(\cos{\left(x y \right)}\right) = - x \sin{\left(x y \right)}$ (for steps, see derivative calculator).

Now, just plug in the found partial derivatives to get the curl: $\operatorname{curl}{\left(\cos{\left(x y \right)},e^{x y z},\sin{\left(x y \right)} \right)} = \left(x \left(- y e^{x y z} + \cos{\left(x y \right)}\right), - y \cos{\left(x y \right)}, x \sin{\left(x y \right)} + y z e^{x y z}\right).$

$\operatorname{curl}{\left(\cos{\left(x y \right)},e^{x y z},\sin{\left(x y \right)} \right)} = \left(x \left(- y e^{x y z} + \cos{\left(x y \right)}\right), - y \cos{\left(x y \right)}, x \sin{\left(x y \right)} + y z e^{x y z}\right)$A