# Cross Product Calculator

The online calculator will find the cross product of two vectors, with steps shown.

$($ $)$
Comma-separated.
$($ $)$
Comma-separated.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Calculate $\left(3, 1, 4\right)\times \left(-2, 0, 5\right)$.

## Solution

To find the cross product, we form a formal determinant the first row of which consists of unit vectors, the second row is our first vector, and the third row is our second vector: $\left|\begin{array}{ccc}\mathbf{\vec{i}} & \mathbf{\vec{j}} & \mathbf{\vec{k}}\\3 & 1 & 4\\-2 & 0 & 5\end{array}\right|$.

Now, just expand along the first row (for steps in finding a determinant, see determinant calculator):

$\left|\begin{array}{ccc}\mathbf{\vec{i}} & \mathbf{\vec{j}} & \mathbf{\vec{k}}\\3 & 1 & 4\\-2 & 0 & 5\end{array}\right| = \left|\begin{array}{cc}1 & 4\\0 & 5\end{array}\right| \mathbf{\vec{i}} - \left|\begin{array}{cc}3 & 4\\-2 & 5\end{array}\right| \mathbf{\vec{j}} + \left|\begin{array}{cc}3 & 1\\-2 & 0\end{array}\right| \mathbf{\vec{k}} = \left(\left(1\right)\cdot \left(5\right) - \left(4\right)\cdot \left(0\right)\right) \mathbf{\vec{i}} - \left(\left(3\right)\cdot \left(5\right) - \left(4\right)\cdot \left(-2\right)\right) \mathbf{\vec{j}} + \left(\left(3\right)\cdot \left(0\right) - \left(1\right)\cdot \left(-2\right)\right) \mathbf{\vec{k}} = 5 \mathbf{\vec{i}} - 23 \mathbf{\vec{j}} + 2 \mathbf{\vec{k}}$

Thus, $\left(3, 1, 4\right)\times \left(-2, 0, 5\right) = \left(5, -23, 2\right)$.

$\left(3, 1, 4\right)\times \left(-2, 0, 5\right) = \left(5, -23, 2\right)$A