Ολοκλήρωμα του $$$4^{x}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$4^{x}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int 4^{x}\, dx$$$.

Λύση

Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=4$$$:

$${\color{red}{\int{4^{x} d x}}} = {\color{red}{\frac{4^{x}}{\ln{\left(4 \right)}}}}$$

Επομένως,

$$\int{4^{x} d x} = \frac{4^{x}}{\ln{\left(4 \right)}}$$

Απλοποιήστε:

$$\int{4^{x} d x} = \frac{4^{x}}{2 \ln{\left(2 \right)}}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{4^{x} d x} = \frac{4^{x}}{2 \ln{\left(2 \right)}}+C$$

Απάντηση

$$$\int 4^{x}\, dx = \frac{4^{x}}{2 \ln\left(2\right)} + C$$$A


Please try a new game Rotatly