Ολοκλήρωμα του $$$2 - a^{2}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$2 - a^{2}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \left(2 - a^{2}\right)\, da$$$.

Λύση

Ολοκληρώστε όρο προς όρο:

$${\color{red}{\int{\left(2 - a^{2}\right)d a}}} = {\color{red}{\left(\int{2 d a} - \int{a^{2} d a}\right)}}$$

Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, da = a c$$$ με $$$c=2$$$:

$$- \int{a^{2} d a} + {\color{red}{\int{2 d a}}} = - \int{a^{2} d a} + {\color{red}{\left(2 a\right)}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int a^{n}\, da = \frac{a^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=2$$$:

$$2 a - {\color{red}{\int{a^{2} d a}}}=2 a - {\color{red}{\frac{a^{1 + 2}}{1 + 2}}}=2 a - {\color{red}{\left(\frac{a^{3}}{3}\right)}}$$

Επομένως,

$$\int{\left(2 - a^{2}\right)d a} = - \frac{a^{3}}{3} + 2 a$$

Απλοποιήστε:

$$\int{\left(2 - a^{2}\right)d a} = \frac{a \left(6 - a^{2}\right)}{3}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\left(2 - a^{2}\right)d a} = \frac{a \left(6 - a^{2}\right)}{3}+C$$

Απάντηση

$$$\int \left(2 - a^{2}\right)\, da = \frac{a \left(6 - a^{2}\right)}{3} + C$$$A


Please try a new game Rotatly