Ολοκλήρωμα της $$$\frac{t^{2} e^{- x^{2}}}{u}$$$ ως προς $$$x$$$

Ο υπολογιστής θα βρει το ολοκλήρωμα/αντιπαράγωγο της $$$\frac{t^{2} e^{- x^{2}}}{u}$$$ ως προς $$$x$$$, με εμφάνιση βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \frac{t^{2} e^{- x^{2}}}{u}\, dx$$$.

Λύση

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{t^{2}}{u}$$$ και $$$f{\left(x \right)} = e^{- x^{2}}$$$:

$${\color{red}{\int{\frac{t^{2} e^{- x^{2}}}{u} d x}}} = {\color{red}{\frac{t^{2} \int{e^{- x^{2}} d x}}{u}}}$$

Αυτό το ολοκλήρωμα (Συνάρτηση σφάλματος) δεν έχει κλειστή μορφή:

$$\frac{t^{2} {\color{red}{\int{e^{- x^{2}} d x}}}}{u} = \frac{t^{2} {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(x \right)}}{2}\right)}}}{u}$$

Επομένως,

$$\int{\frac{t^{2} e^{- x^{2}}}{u} d x} = \frac{\sqrt{\pi} t^{2} \operatorname{erf}{\left(x \right)}}{2 u}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\frac{t^{2} e^{- x^{2}}}{u} d x} = \frac{\sqrt{\pi} t^{2} \operatorname{erf}{\left(x \right)}}{2 u}+C$$

Απάντηση

$$$\int \frac{t^{2} e^{- x^{2}}}{u}\, dx = \frac{\sqrt{\pi} t^{2} \operatorname{erf}{\left(x \right)}}{2 u} + C$$$A


Please try a new game Rotatly