$$$x$$$ değişkenine göre $$$\frac{t^{2} e^{- x^{2}}}{u}$$$ fonksiyonunun integrali

Hesaplayıcı, $$$x$$$ değişkenine göre $$$\frac{t^{2} e^{- x^{2}}}{u}$$$ fonksiyonunun integralini/antitürevini bulur ve adım adım gösterir.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{t^{2} e^{- x^{2}}}{u}\, dx$$$.

Çözüm

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{t^{2}}{u}$$$ ve $$$f{\left(x \right)} = e^{- x^{2}}$$$ ile uygula:

$${\color{red}{\int{\frac{t^{2} e^{- x^{2}}}{u} d x}}} = {\color{red}{\frac{t^{2} \int{e^{- x^{2}} d x}}{u}}}$$

Bu integralin (Hata Fonksiyonu) kapalı biçimli bir ifadesi yok:

$$\frac{t^{2} {\color{red}{\int{e^{- x^{2}} d x}}}}{u} = \frac{t^{2} {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(x \right)}}{2}\right)}}}{u}$$

Dolayısıyla,

$$\int{\frac{t^{2} e^{- x^{2}}}{u} d x} = \frac{\sqrt{\pi} t^{2} \operatorname{erf}{\left(x \right)}}{2 u}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{t^{2} e^{- x^{2}}}{u} d x} = \frac{\sqrt{\pi} t^{2} \operatorname{erf}{\left(x \right)}}{2 u}+C$$

Cevap

$$$\int \frac{t^{2} e^{- x^{2}}}{u}\, dx = \frac{\sqrt{\pi} t^{2} \operatorname{erf}{\left(x \right)}}{2 u} + C$$$A


Please try a new game Rotatly