Παράγωγος της $$$e^{\frac{x}{2}}$$$

Η αριθμομηχανή θα βρει την παράγωγο της συνάρτησης $$$e^{\frac{x}{2}}$$$, με εμφάνιση των βημάτων.

Σχετικοί υπολογιστές: Υπολογιστής λογαριθμικής παραγώγισης, Υπολογιστής Έμμεσης Παραγώγισης με Βήματα

Αφήστε κενό για αυτόματη ανίχνευση.
Αφήστε κενό, αν δεν χρειάζεστε την τιμή της παραγώγου σε ένα συγκεκριμένο σημείο.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\frac{d}{dx} \left(e^{\frac{x}{2}}\right)$$$.

Λύση

Η συνάρτηση $$$e^{\frac{x}{2}}$$$ είναι η σύνθεση $$$f{\left(g{\left(x \right)} \right)}$$$ των δύο συναρτήσεων $$$f{\left(u \right)} = e^{u}$$$ και $$$g{\left(x \right)} = \frac{x}{2}$$$.

Εφαρμόστε τον κανόνα της αλυσίδας $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(e^{\frac{x}{2}}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(e^{u}\right) \frac{d}{dx} \left(\frac{x}{2}\right)\right)}$$

Η παράγωγος της εκθετικής συνάρτησης είναι $$$\frac{d}{du} \left(e^{u}\right) = e^{u}$$$:

$${\color{red}\left(\frac{d}{du} \left(e^{u}\right)\right)} \frac{d}{dx} \left(\frac{x}{2}\right) = {\color{red}\left(e^{u}\right)} \frac{d}{dx} \left(\frac{x}{2}\right)$$

Επιστροφή στην αρχική μεταβλητή:

$$e^{{\color{red}\left(u\right)}} \frac{d}{dx} \left(\frac{x}{2}\right) = e^{{\color{red}\left(\frac{x}{2}\right)}} \frac{d}{dx} \left(\frac{x}{2}\right)$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασιαστή $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ με $$$c = \frac{1}{2}$$$ και $$$f{\left(x \right)} = x$$$:

$$e^{\frac{x}{2}} {\color{red}\left(\frac{d}{dx} \left(\frac{x}{2}\right)\right)} = e^{\frac{x}{2}} {\color{red}\left(\frac{\frac{d}{dx} \left(x\right)}{2}\right)}$$

Εφαρμόστε τον κανόνα δύναμης $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ με $$$n = 1$$$, δηλαδή $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$\frac{e^{\frac{x}{2}} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{2} = \frac{e^{\frac{x}{2}} {\color{red}\left(1\right)}}{2}$$

Άρα, $$$\frac{d}{dx} \left(e^{\frac{x}{2}}\right) = \frac{e^{\frac{x}{2}}}{2}$$$.

Απάντηση

$$$\frac{d}{dx} \left(e^{\frac{x}{2}}\right) = \frac{e^{\frac{x}{2}}}{2}$$$A


Please try a new game Rotatly