Προσδιορίστε την κωνική τομή $$$- 60 x \left(10 y - 90\right) = 0$$$
Σχετικοί υπολογιστές: Υπολογιστής παραβολής, Υπολογιστής Κύκλου, Υπολογιστής έλλειψης, Υπολογιστής υπερβολής
Η είσοδός σας
Αναγνωρίστε την κωνική τομή $$$- 60 x \left(10 y - 90\right) = 0$$$ και βρείτε τις ιδιότητές της.
Λύση
Η γενική εξίσωση μιας κωνικής τομής είναι $$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$.
Στην περίπτωσή μας, $$$A = 0$$$, $$$B = 600$$$, $$$C = 0$$$, $$$D = -5400$$$, $$$E = 0$$$, $$$F = 0$$$.
Η διακρίνουσα της κωνικής τομής είναι $$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = 0$$$.
Στη συνέχεια, $$$B^{2} - 4 A C = 360000$$$.
Εφόσον $$$\Delta = 0$$$, πρόκειται για εκφυλισμένη κωνική τομή.
Εφόσον $$$B^{2} - 4 A C \gt 0$$$, η εξίσωση αναπαριστά δύο διαφορετικές τέμνουσες ευθείες.
Απάντηση
$$$- 60 x \left(10 y - 90\right) = 0$$$A αναπαριστά το ζεύγος των ευθειών $$$x = 0$$$, $$$y = 9$$$A.
Γενική μορφή: $$$600 x y - 5400 x = 0$$$A.
Παραγοντοποιημένη μορφή: $$$x \left(y - 9\right) = 0$$$A.
Γράφημα: δείτε το graphing calculator.