Bestimme $$$P{\left(X = 3 \right)}$$$ für die geometrische Verteilung mit $$$n = 3$$$ und $$$p = 0.2$$$
Verwandter Rechner: Exponentialverteilungsrechner
Ihre Eingabe
Berechnen Sie die verschiedenen Werte für die geometrische Verteilung mit $$$n = 3$$$ und $$$p = 0.2 = \frac{1}{5}$$$ (ohne den erfolgreichen Versuch mitzuzählen).
Antwort
Mittelwert: $$$\mu = \frac{1 - p}{p} = \frac{1 - \frac{1}{5}}{\frac{1}{5}} = 4$$$A.
Varianz: $$$\sigma^{2} = \frac{1 - p}{p^{2}} = \frac{1 - \frac{1}{5}}{\left(\frac{1}{5}\right)^{2}} = 20$$$A.
Standardabweichung: $$$\sigma = \sqrt{\frac{1 - p}{p^{2}}} = \sqrt{\frac{1 - \frac{1}{5}}{\left(\frac{1}{5}\right)^{2}}} = 2 \sqrt{5}\approx 4.472135954999579.$$$A
$$$P{\left(X = 3 \right)} = 0.1024$$$A
$$$P{\left(X \lt 3 \right)} = 0.488$$$A
$$$P{\left(X \leq 3 \right)} = 0.5904$$$A
$$$P{\left(X \gt 3 \right)} = 0.4096$$$A
$$$P{\left(X \geq 3 \right)} = 0.512$$$A